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Block 19, Continued

Project One. Prior work in our laboratory showed that a
percept of global coherent motion can be produced from the
combination of many different, localized motion vectors. Now,
using random-dot cinematograms, we established that hysteresis
is strongly associated with such percepts., D.W. Williams, G.
Phillips and P. Sekuler showed that the characteristics of the
hysteresis are relatively robust with respect to changes in
dot density, display area and location. Changing the display's
directional content., hnwpir, did alter the hysteresis protile
in a manner that is consistent with a model incorporating
cooperative interactions among direction-selective motion
mechanisms. These results lend significant support to a view
of motion processing in which cooperative interactions play a
prominent role.

Project Two. A second major project during this pcriod
followed-up our previous finding that praCtice seemed to
produce direction-selective improvement in observers' ability
to discriminate between highly similar directions of motion.
Kosnik, Fikre and Sekuler clarified the basis for this
improvement by recording amobservers eye movements while they
tried to discriminate between slightly different directions of
target motion. We found that observers did not need to track
the moving target in order to learn the discrimination. These
results suggest that practice's influence on the
discrimination of motion's direction is perceptual rather than I
sensori-motor in character.

Project Three. S. Watamaniuk, R. Sekuler and D.W. Williams
'' 'reated random-dot cinematograms in which each dot's
successive movements were independently drawn from a Gaussiandistribution of directions of some characteristic bandwidth.

As established earlier, such displays, comprising many !
different, spatially intermingled local motion vectors, can
produce a percept of global coherent motion in a single
direction.' Using pairs of cinematograms,direction
discrimination of global motion was measured under various
conditions of direction distribution bandwidth, exposure
duration, and constancy of each dot's path. A line-element
model gave an excellent account of the results: i) over a
considerable range, discrimination was unaffected by the
cinematogram's direction distribution bandwidth; ii) only for
the briefest presentations did changes in duration have an
effect; iii) so long as the overall directional content of the
cinematogram remained unchanged, the constancy or randomness
of individual dots' paths did not affect discrimination.
Finally, the line-element model continued to give a good
account of the results when we made additional measurements
with uniform rather than Gaussian distributions of directions.

Project Four. This project extended previous work on the
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Block 19, Continued A7OYR-Tf 89-U 769

perception of motion direction and speed to an important
related case, perception of change in velocity. E. Dzhafarov
and R. Sekuler set out to identify the information that
controlled speeded response to motion onset or change in
motion. Observers were required to react to the change in
movement of a random-dot field whose velocity switched
abruptly from V0 to V1 . Changes in velocity were created by
either shifting the speed, with direction constant, or by
reversing direction, with speed _onstanL. Mean reaction times
and their standard deviations were decreasing functions of the
difference IVI-Vo1 and increasing function of the initial
speed, IV01. The results are quantitatively accounted for oy a
modification of the Local Dispersion model that Dzhafarov and
J. Allik proposed for motion detectability. In our
modification, detection of change of velocity from V0 to V1
is treated as structurally equivalent to the detection of
onset of a motion whose velocity is IV,-Vol. We have found
that the Local Dispersion model can be realized by the mass
activation of network of simple, bilocal correlators, like
those proposed by J. Koenderink.

Project Five. M. Nawrot and R. Sekuler used random-dot
cinematograms to examine how motion within one region of space
influences the motion seen in another, neighboring region. The
cinematograms were spatially heterogeneous, comprising
alternating strips within which dots i)tended to move in one
direction, or ii)moved about randomly (dynamic noise). When
the alternating strips were narrow, motion in one direction
induced a similar direction of illusory motion in the
adjoining dynamic noise (assimilation); when alternating
strips were wide, motion tended to induce an illusory opposed
motion in the dynamic noise (contrast). Since it exhibits
hysteresis, this illusory motion probably results from a
network of spatially distributed, cooperative processes. The
shift from assimilation to contrast, as the cinematogram's
strips increase in size, suggests that facilatory and
inhibitory influences of the network extend over different
distances. To account for these results, required only a small
addition to the model proposed earlier in this reporting
period by Williams, Sekuler, and Phillips.

Project Six. D.W. Williams and G. Phillips extended our
earlier work on random-dot cinematograms to the domain of
three-dimensional structure from motion. It's been long known
that the human visual system can recover the correct three-
dimensional structure of moving objects solely from the
relative changes in the two-dimensional retinal projection.
The basis for this ability is unclear since infinitely many
combinations of three- dimensional structure and motion can
project to the same two-dimensional image. Using a stochastic
random-dot cinematogram, Williams and Phillips demonstrated



Block 19, Continued

that the recovery of structure from motion does not depend
upon the details of the spatio-temporal relations among
elements of the image, but rather upon the overall directional
content of the motion in the image. Further, the three-
dimensional percept obtained with the random-dot stimulus
exhibits hysteresis behavior. Changing the directional content
of the stimulus altered the hysteresis profile in manner
consistent with the Williams et al. model (developed earlier
in this period) incorporating cooperative interactions among
direction-selective mechanisms. In addition, the results
strongly challenge widely-held views of the recovery of
structure from motion, including models that depend upon
constraints such as rigidity or incremental rigidity.

Project Seven. As an ancillary to the experimental and
theoretical work of the Projects One through Six, R. Sekuler
organized a session on motion perception at the Badenweiler
(West Germany) Conference on the physiological underpinnings
of perception. He subsequently had sole responsibility for
preparing a written version of that session. For the sake of
completeness, that written version, which will appear as a
chapter in a book to be published this year, is included in
the report.

Accesion For
NTIS C'RA&I

DTIC TA2 0

Unarlnolnced 

Justic.tion

Avdability 
Codes

TI

011la



Project One:

Cooperative phenomena in the
perception of motion direction

Douglas Williams, Gregory Phillips, :.
and Robert Sekuler

.2 .
1', . •

-o-



INTRODUCTION

A collection of localized motion vectors can produce a

percept of global coherent motion along a single direction, even

though the directional range of the individual motion vectors is

quite broad. Chang and Julesz2 have suggested that this

coherent motion percept may reflect an underlying cooperative

process. In general, a cooperative system consists of local

elements that interact with each other, thereby generating global

behavior that would not occur were the elements isolated from one

another. One signature of a cooperative system, hysteresis, is

a form of memory in which a system, having reached a stable

state, shows resistance to further change. A consequence of such

behavior is that the system's response depends upon the history

of stimulation.

The first evidence of a cooperative phenomenon in the visual
3

system was that of binocular neural hysteresis. These authors

found that, while it was necessary to bring a pair of random dot

stereograms to within 6' visual angle of each other for

stereoscopic fusion to occur, it was possible to pull the pair

apart by as much as 20 before fusion was lost. Once fusion was

lost, the stereo pair had to be returned to a disparity of 6° for

fusion to be reestablished. The amount of disparity required to

/



fuse or split apart the two stereograms thus depended upon the

initial perceptual condition and the direction of the disparity

change.

In this paper, we seek to strengthen a cooperative

interpretation of motion perception by looking for evidence of

hysteresis in the perception of motion direction using random-dot

cinematograms. In our cinematograms, each dot takes an indepen-

dent, two-dimensional random walk of constant step size.

Specifically, each dot's direction of displacement from one frame

to the next is chosen randomly from a uniform distribution of

directions. The percept that results depends upon the range of

this uniform distribution. For a range of 360 , only the local

random motion of the individual dots is evident. For a range of

1800 or less, however, the percept is that of global coherent

motion along the direction of the mean of the distribution,

although the individual perturbations of the dots are still

evident.

If this percept of global coherent motion is a result of

cooperative processing, one might then expect the percept to

exhibit hysteresis behavior. That is, by gradually changing the

directional content of the stimulus between the two extremes of a

uniform distribution with range 1800 or less and a uniform

distribution with range 3600, one can measure the transition

points marking the change from global coherent motion to local

2
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random motion and vice versa. The results would be indicative of

hysteresis if the directional content of the stimulus for which

these transitions occur depended upon whether the perceptual

change was from local to global motion or from global to local

motion.

Our experimental results confirm the existence of hysteresis

for the global coherent motion percept. Furthermore, we have

found it possible to account for this hysteresis by cooperative,

nonlinear excitatory and inhibitory interactions among direction-

selective mechanisms for motion. Other models incorporating such

cooperative interactions have been successful in describing

binocular stereopsis.4-9

METHODS

Our stimuli, dynamic random-dot cinematograms, were

generated by a PDP 11/34 computer that passed values through a

digital-to-analog converter for display on a Hewlett Packard

1321A X-Y display (P31 phosphor). A "wrap-around" scheme caused

dots that were displaced beyond the boundary of the display to

reappear at the opposite side of the display. A cardboard mask

restricted the visible pattern to a circular region with a

0diameter of 16 . In the absence of a fixation point, observers

were instructed to maintain their fixation at the center of the

screen; viewing was monocular, with the other eye occluded by an

3



opaque 3ye patch.

A detailed discussion of the spatial and temporal

parameters of the display can be found in Williams and Sekuler.1

However, to summarize briefly: the display was composed of 512

dots, each measuring 0.10 in diameter with a spatial density of

2approximately 1.6 dots/deg . From one display frame to the next,

each dot was displaced by 0.90. The frame duration -- the time

required to present all the dots once -- was 9.0 msecs, with an

interframe interval of 95.0 msecs.

The display itself provided the only luminance in the room

and observers adapted to the light level of a blank screen for

five minutes before starting an experimental session. At the

beginning of each session, the threshold luminance for a field of

stationary dots was established using a von Bekesy tracking
10

procedure. Thereafter, the cinematograms were presented at

twice this threshold luminance.

Each dot in the display took a two-dimensional random walk

of constant step size, drawing its direction of movement randomly

from a uniform distribution of directions. As a result, a dot's

direction of movement was independent not only of the

displacements of the other dots in the field but also of its own

prior displacements. Such a stimulus can generate a percept of

global motion, depending upon the range of the underlying

4
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directional distribution. When the range of the distribution

extends over a full 3600, the percept is that of only localized

random motion, whereas if the distribution extends over a much

smaller range of 1800 or less, the percept is that of global

coherent motion along the direction of the mean - upwards in our

case. Because of the percept associated with each, the 3600

distribution is referred to as the "noise" stimulus, and the

1800, or smaller, distribution as the "signal".

During an experimental session two modes of presentation

were randomly intermixed. In one mode, all dots initially chose

their directions of movement from the signal distribution,

corresponding to an initial percept of global coherent motion

along the upward direction. After a random period of time

lasting up to 12 seconds, the proportion of dots choosing their

direction from the signal distribution slowly decreased by two

dots per frame; in other words, the proportion of dots choosing

from the noise distribution increased by two dots per frame. The

observers were asked to report, by means of a response switch,

when the field of dots first appeared to exhibit only local

random motion, having previously exhibited global upward motion.

Following this response, which was recorded by the computer, the

proportion of signal continued to decrease for a random time up

to 6 seconds. At this point, the proportion of signal now

increased by two dots per frame until the observer reported that

the percept of global coherent motion had been restored. This

S



second transition was recorded and the trial was terminated. The

two random intervals that were incorporated into each trial

ensured that the observer could not use temporal cues in deciding

when a transition occurred. Also, the rate of change in the

signal/noise proportion (i.e., 2 dots per frame) was chosen so

that the stimulus duration was not too long nor the response

resolution too coarse.

In order to make the stimulus more stochastic, every dot on

each frame was permitted to choose its direction of motion from

either the signal or noise distribution, irrespective of which

distribution it had chosen from on previous frames. In

particular, a dot had a probability equal to the proportion of

signal dots of choosing its direction of motion from the signal

distribution and a probability equal to the proportion of noise

of choosing from the noise distribution.

In the other mode of presentation, the trial structure was

the same except that the initial stimulus condition was that of

all noise, with the first and second perceptual transitions going

from local random to global coherent motion and back again.

We have chosen to parameterize a transition by the

proportion of dots choosing their direction of motion from the

signal distribution at the transition. In a single experimental

session, 20 measurements of the signal proportion were made at

C
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each of the two perceptual transitions. A complete data set

typically comprised the results obtained over 5 sessions. Data

from two naive observers are reported.

RESULTS

The results for the two observers are shown in Figure 1 for

the case in which the range of the signal distribution was 900

(i.e., +450 to -450 about the vertical). The two possible motion

percepts, "global upward flow" and "local random motion", are

shown versus the proportion of dots choosing their direction of

motion from the signal distribution. In each panel of the

figure, the solid circle and associated error bar indicate the

mean and standard deviation of the measurements of the signal

proportion for the transition from local random motion to global

upward flow. The open circle represents the data for the

opposite transition from global upward flow to local random

motion. We shall refer to the perceptual transition from local

random motion to global upward flow as the 'global' transition

and the transition in the opposite direction as the 'local'

transition. For each observer these respective transition points

are significantly different at the 5% level.

The arrows and solid lines schematically represent changes

in the perceptual state as the proportion of signal dots is

either increased or decreased. As indicated by the lower path inI
! 7
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each panel, the percept of only local random motion is unchanged

as the proportion of signal is increased, until this proportion

reaches the value shown at G, at which point a 'global'

transition occurs. The global percept persists for all larger

values of the signal proportion. Conversely, the upper path

indicates that in order to lose the global percept it is

necessary to decrease the proportion of signal to the value at L,

below which the local percept then prevails. The criterion for

the existence of hysteresis is that the proportion of signal at

point L must be less than that at point G. The results for both

observers obviously satisfy this criterion. It should be noted

that the hysteresis profile is shown as square-cornered for

schematic purposes. Observers did comment, however, upon the

abruptness of the perceptual transitions.

At this point, we sought to firmly establish the role of

stimulus history in the observed hysteresis. To do so, it was

necessary to rule out some other potential explanations. It is

unlikely that the hysteresis simply reflects a response delay due

to reaction time, since the mean time between the global and

local transitions is 8.6 sec for observer JF and 8.9 sec for TKD-

- more than an order of magnitude greater than typical reaction

times. Another potential explanation, the motion aftereffect,

would actually tend to diminish the width of the hysteresis

profile, since it would likely hasten, and not retard, the

perceptual transition from upward flow to local,random motion.

I



As a consequence, it is possible that the hysteresis may be even

more robust than we have observed. Lastly, our results might be

complicated by eye movements. Because of the stochastic nature

of the stimulus, it would be difficult to track individual dots;

however, eye movements could be entrained to the upward flow. To

examine this possibility we repeated the experiments with a

fixation dot in the center of the screen. Eye movement
11

recordings obtained by Kosnik et al. indicate that the

directions of eye movements are not correlated with the direction

of movement in random dot stimuli if a stationary fixation dot is

provided. Results for both observers, obtained with and without

a fixation dot, are tabulated in Table 1. In order to search for

statistically significant differences dependent upon the presence

of the fixation dot, a t-test was performed. To control for

inflation of spurious significant differences in the statistical

analysis, the chosen significance level of 5% has been scaled by

the number of comparisons. For the fixation data, there were 4

comparisons, giving a corrected significance level of 1.25%

(Subsequent statistical analyses are similarly corrected for the

number of comparisons.) For both observers, the local

transitions, measured with and without a fixation dot, are not

significantly different at the 1.25% level. For the global

transitions, results for observer JF are significantly different

while those for TKD are not. For our purposes, it is

particularly important that the local transitions for both

observers are not significantly different with respect to the

I



presence of a fixation dot. It suggests that the hysteresis can

not be attributed to eye movements entrained to global flow.

We next examined the effects brought about by systematically

altering the stimulus history. Specifically, we carried out

experiments for two additional ranges of signal, 1800 and 10,

keeping the noise distribution the same. Note that each of the

different signal distributions will generate a different history

for the directional content of the stimulus. Figure 2 shows the

results for both observers at the two additional ranges, together

with the original results at the 90 signal range.

From Figure 2 it can be seen that decreasing the signal

range has the effect of narrowing the hysteresis profile and

shifting it to the left. The leftward shift indicates that as

the signal range is decreased, a smaller number of signal dots is

required for a transition. This finding is not unexpected if

hysteresis is indeed dependent upon the directional content of

the stimulus, since a dot with a small directional range about

the vertical is a more effective stimulus for upward movement

than is one with a broad directional range. That is, fewer

signal dots should be needed to switch from a local to a global

percept when the dots chose their directions of motion from a

small rather than a broad distribution. Similarly, for a smaller

signal range, fewer signal dots should be required to maintain

the global percept once it established. Thus, the smaller the

/0!



range of the signal distribution, the smaller the proportion of

signal dots required for the perceptual transitions. The

observed shift in the hysteresis profile with decreasing signal

range is further evidence that the directional content of the

stimulus is a contributing factor to the hysteresis.

Spatial properties

Since the stimulus motion vectors are distributed over

space, it is natural to consider how the spatial dimension

figures into the cooperative behavior we have demonstrated.

Also, for the purpose of formulating a mathematical model of this

behavior, we need an understanding of its spatial dependence.

I Accordingly, we have studied the effects of changes in several

spatial parameters of the display: dot step size, dot density,

display area and location of the stimulus field. Effects were

measured for a decrease in step size by a factor of nine, a

Idecrease in dot density and display area by a factor of four, and

3 a displacement of the stimulus field 80 into the periphery.

1. Step Size

Transitions were measured using a smaller step size of 0.10

j fbr all three ranges of the signal distribution (i.e., 180, 90

and 10). For this step size, it was necessary to decrease the

1interframe interval from 95.0 to 25.0 msec in order to generate

! 1



1

smooth, continuous apparent motion. These changes resulted in a

decrease in dot velocity by a factor of about 3, from 8.60 /sec to

2.9 0 /sec. It was also necessary to decrease the rate of change

in the proportion of signal, from 2 dots to 1 dot per frame, so

as to maintain a comparable duration for the presentation.

Data obtained at both step sizes, 0.10 and 0.90, are

tabulated in Table 2 and shown in Figure 5. To ascertain the

statistical significance of changing the step size, a t-test was

carried out between respective pairs of transitions for the two

conditions. The results of these tests are also included in

Table 2. For observer TKD, statistically significant differences

at the 0.4% level are found at only two transitions: the local

transition for signal range 900 and the global transition for

signal range 10 .  For observer JF, all but two transitions show

significant differences with a change in step size. The two that

are not significantly different are the global and local

transitions for the 900 signal range. In view of the differences

between the observers, we determined the proportions of the

,ariance (MU 2 ) associated with changing the step size. In Table

2, the proportion of the total variance that is accounted for by

the change in step size is listed for each transition (see

Keppel12 for a formulation of the magnitude of treatment effect,

w 2). The largest proportion, 2 = .37, was obtained for

observer JF at the global transition for the 10 signal range. At

all other transitions, the proportion of the variance that could



be attributed to the change in step size was at most .16. Thus,

while significant differences resulted from a change in step

size, the magnitude of the effect, as a proportion of the total

variance of the data, is relatively small.

2. Dot Density, Field Area and Field Eccentricity

The effects of changing the dot density, display area and

eccentricity are reported together. For observer JF,

measurements were made using a signal range of 900 and a step

size of 0.90. For observer TKD, the signal range was 1800 and

the step size, 0.10.

The dependence of hysteresis on dot density was assessed by

decreasing the number of dots by a factor of four, thus reducing

2the density from 1.6 to 0.4 dots/deg2 . To maintain the same rate

of change in the proportion of signal and noise as with a full

complement of dots, the rate of change for the 0.1 step size was

reduced from 1 dot per frame to 1 dot every 4 frames, and for the

0.90 step size, from 2 dots per frame to 2 dots every 4 frames.

In order to determine the role of stimulus area, the

circular display field was reduced in area by a factor of four.

The effect of location was examined by centering this smaller

field 80 in the nasal visual field. For both of these
2

manipulations the dot density was maintained at 1.6 dots/deg 2

/3



the original value, so that when the field area was reduced by a

factor of four, the total number of dots presented was equal to

that for the reduced density case.

The data for these experimental conditions are presented in

Fig. 3 for observer JF, and in Fig. 4 for TKD. The original

results for both observers at the appropriate signal range and

step size are also shown in the Figures as the data sets labeled

"A". Data for the reduced density stimuli are labeled "B", while

data for the reduced stimulus area are labeled "C". The

peripheral presentation data are labeled "D". These data are

summarized in Table 3 for both observers.

To determine the statistical significance of each spatial

manipulation, a t-test was performed between appropriate

transition points obtained with the original display conditions

and each of the other conditions. Results of these tests are

presented in Table 3. For observer TKD, the data from one

condition at each transition was found to be significantly

different, at the 0.4% level, from the data measured using the

original display parameters . These are the reduced display area

data at the local transition and the peripheral presentation data

at the global transition. In the case of observer JF, the

peripheral presentation data were found to be significantly

different from the original data at both the local and global

transitions. Observer JF also showed a significant difference at

q1



the global transition for the reduced display area condition

compared to results for the original display parameters. In view

of the fact that the majority of the results were not

significantly altered by changes in the spatial properties of the

stimulus, we calculated the magnitude of the effect of each of

the spatial changes. The proportion of the total variance

accounted for by the manipulation of each of the spatial

properties tested is listed in Table 3. For both observers, the

proportion of the variance associated with each of the changes in

spatial parameters is relatively small, with a maximal value of

.20.

In summary, the changes in spatial properties of the display

did produce some statistically significant differences in the

hysteresis profiles. However, post hoc statistical analysis

indicates that the magnitudes of such differences are small.

Undoubtedly, extreme changes in the spatial properties of the

stimulus would substantially alter the hysteresis characteristics

but, as a first approximation, we neglect the spatial properties

of the stimulus in the formulation of a cooperative model.

MODEL

I
As will be recalled, a cooperative system is defined as one

consisting of local elements that interact to generate global

behavior. The local elements in our cooperative model are a set

I



of direction selective mechanisms. The interactions among these

mechanisms consist of nonlinear excitation and inhibition such

that those mechanisms with similar preferred directions of

movement facilitate one another's responses, whereas those

mechanisms whose preferred directions are further removed inhibit

one another's responses.

Specifically, the model comprises N direction-selective

mechanisms, each with a Gaussian-shaped sensitivity profile. For

the kth mechanism centered along direction 0k the sensitivity to

the direction of motion, 0, is given by:

S = A exp J-[(-Ok)/h]2 *ln23 (1)

where h is the half-amplitude, half-bandwidth of the mechanism

and A is the amplitude. These mechanisms are assumed to be
0!

evenly spaced over 360 , with adjacent mechanisms having a

center-to-center separation equal to their half-amplitude half-

bandwidth. The excitatory component of the kth mechanism's

response at time t is denoted by E(0 k,t). Inhibition is mediated t
by a set of N associated mechanisms, with the inhibitory

component of the kth mechanism's response at time t given by

I(0 kt)

The dynamic response of this cooperative system is

represented by a pair of coupled differential equations with the



form:

d_

dE (t) = - Ek(t) +dt kk

N N 360

[1-r e E k(t)]Ye [ A[  Eji t ) -  i e I j ( t )+ E Sk(0)pr[D()]]1

j=l j=l 0=1

(2)

dtk(t) =- Ik(t) +

N N
[-ik(t)1]Ji wA[ E#eiEj t) - F"0iiI (t) I I

j=l jl

where pr[D(0)] is the proportion of dots in the distribution D(O)

that move in direction 0 andJi is a sigmoid non-linearity of the

form:

jf(Rj) t [1+exp(-j(M.-ej))-I  - [1+exp(v e.)] -  (3)

'B-

where j-e,i. Interactions among the mechanisms are .defined by

the connectivity functions 4jj, in Eq. (2). The magnitude of the

a interaction between a mechanism centered at 0k and one centered

/7



at 01 is:

4j, = b jjexp[-10k-0 I / j , ] (4)

where j=e,i and j'=e,i. The form of Eqs. (2)-(4) was originally

proposed by Wilson and Cowan 1 3  in their cooperative theory of

cortical tissue dynamics. The reader is referred to their paper

for a detailed description of the parameters in Eqs. (2)-(4) and

a general discussion of the model's behavior under various input

conditions.

Based upon previous results obtained in our laboratory, the

number of mechanisms, N, was set equal to 12 and the half-

amplitude half-bandwidth, h, to 300 14 The parameters of Eqs.

(2)-(4) were constrained in order for the system of equations to

operate in what Wilson and Cowan 1 3  termed the active transient

mode. In this mode, the system exhibits hysteresis switchina

between different steady states of activity. In the model

simulation, the percept of local random motion is represented by

a steady state of uniform activity across all mechanisms. Global

upward flow is represented by a steady state in which the

activity is localized about the mechanism selective for upward

movement. A transition point is defined by the proportion of

signal at which the network switches between these two states of

activity. The results are shown in Fig..5, with the dashed lines

marking the transition points calculated from the model. For
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each observer, a single parameter set has been chosen to fit the

data for all three different signal ranges at both step sizes.

As can be seen, the model captures the leftward shift and

narrowing of the hysteresis profile with decreasing signal range.

This may be understood by considering that with decreasing signal

range, more activity is confined to fewer direction-selective

mechanisms in the neighborhood of the upward direction. Thus a

smaller proportion of signal is required to indicate the upward

direction of motion. Furthermore, having fewer such active

mechanisms also reduces the strength of the cooperative

interactions, resulting in a narrower hysteresis profile.

Fender and Julesz 3 obtained a similar narrowing of binocular

hysteresis profiles when the number of stimulus elements was

decreased.

The model parameters for each observer are listed in Table

4. Note that the parameters for both observers differ only in a

single value, specifically, the amplitude of the mechanisms'

sensitivity profile. These parameter sets are not the only ones

that could have been used to fit the data. However, their

uniqueness is not of particular concern since we sought only to

demonstrate that the hysteresis data could be interpreted in the

context of a cooperative model.



DISCUSSION

We have found hysteresis in the global motion percept which

results from the combination of different, localized motion

vectors. Furthermore, the hysteresis characteristics are rather

robust with respect to changes in the spatial parameters of the

display, including dot density, display area and location, as

well as step size. This relative spatial invariance suggests a

form of local cooperative processing.

We did find that thp hysteresis profile was sensitive to

changes in the directional content of the stimulus.

Specifically, narrowing the directional range of the signal

brought about both a narrowing and a shift in the position of the

hysteresis profile. Such behavior is consistent with cooperative

processing and we have been able to describe it by a model

incorporating cooperative interactions among direction-selective

motion mechanisms. Both our experimental and theoretical results

provide further support for a cooperative interpretation of

movement perception in random-dot cinematograms, as initially

proposed by Chang and Julesz.
2

What might the role of hysteresis, and more generally

cooperative processing, be in sensory processing? By the very

nature of its interactions, a cooperative network is well-suited

for the enhancement of signal in a noisy environment.15 In the

Zo



case of binocular hysteresis, cooperative processing will make

the ocular registration necessary for binocular stereopsis

relatively resistant to noise. With respect to motion

perception, the function of cooperative interactions among

direction-selective mechanisms may be to enhance the perception

of unidirectional flow in the midst of noise.

II

I
S

t2



References

1. D. Williams and R. Sekuler, "Coherent global motion percepts

from stochastic local motions," Vision Res. 24, 55-62

(1984).

2. J.J. Chang and B. Julesz, "Co-operative phenomena in

apparent movement perception of random-dot cinematograms,"

Vision Res. 24, 1781-1788 (1984).

3. D. Fender and B. Julesz, "Extension of Panum's fusional area

in binocularly stabilized vision," J. Opt. Soc. Am. 57,

819-830 (1967).

4. G. Sperling, "Binocular vision: a physical and a neural

theory," Am. J. Psychol. 83, 461-534 (1970).

5. P. Dev, "Perception of depth surfaces in random-dot

stereograms: a neural model," Int. J. Man-Mach. Stud. 7,

511-528 (1975).

6. J.J. Nelson, "Globality and stereoscopic fusion in binocular

vision," J. Theoret. Biol. 49, 1-88 (1975).

7. D. Marr and T. Poggio, "Cooperative computation of stereo

disparity," Science 194, 283-287 (1976).

22



8. J.E.W. Mayhew, J.P. Frisby and P.Gale, "Computation of

stereo disparity from rivalrous texture stereograms,"

Perception 6, 207-208 (1977).

9. H.R. Wilson, "Hysteresis in binocular grating perception:

contrast effects," Vision Res. 17, 843-851 (1977).

10. P. Tynan and R.W.Sekuler, "Rapid measurement of contrast

sensitivity functions," Am. J. Optom. Physiol. Opt. 54,

573-575 (1977).

11. W. Kosnik, J. Fikre and R. Sekuler, "Improvement in

direction discrimination: No role for eye movements,"

Percept. and Psychophy. 38, 554-558 (1985).

12. G. Keppel, Design and Analysis: A Researcher's Handbook

(Prentice-Hall, Englewood Cliffs, N.J., 1973).

13. H.R. Wilson and J.D. Cowan, "A mathematical theory of the

I functional dynamics of cortical and thalamic nervous

tissue," Kybernetik 13, 55-80 (1973).

14. D. Williams, S. Tweten and R. Sekuler, "Using motion

metamers to investigate the mechanisms of motion,"

Supplement to Invest. Ophthal. and Vis. Sci. 25, 14 (1984).

123



15. H.R. Wilson, "Cooperative phenomena in a homogeneous

cortical tissue model," in Synergetics, H. Haken, ed. (B.G.

Teubner, Stuttgart, 1973).

j
I

I

elf



TABLE 1

Comparison of Transition Data With and Without Fixation Mark

WITHOUT WITH
OBSERVER TRANSITION FIXATION FIXATION t-STATISTIC

MARK MARK P<0.0125

JF local .228+.113 .235+.093 t 1 7 7 =0.471

global .553+.073 .597+.099 t1 77 =3.327*

TKD local .347+.112 .314+.107 t1 18 =1.674

global .683+.152 .698+.152 t1 1 8=0.654

• = statistically significant

.I
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TABLE 2

Comparison of Transition Data for Two Different Step Sizes

MEASURE
BSERVER SIGNAL TRANSITION 0oSTEP SIZE t-STATISTIC OF EFFECT

RANGE 0.9 0.10 P<.004 MAGNITUDE

2

JF 1800 local .2644.159 .1664.148 t1 95=4.461* 0.09

global .776+.122 .842+.160 t19 5 =3.279* 0.05

900 local .228+.113 .211+.116 t1 78=0.956 <0.01

global .553+.073 .597+.126 t178 '=2.787 0.04

10 local .0514.062 .0854.082 t1 9 7 3.251* 0.05

global .3514.059 .4624.083 t19 7=i0.89* 0.37

TKD 1800 local .378+.160 .321+.157 t19 8=2.521 0.03

global .808+.159 .818+.138 t19 8 =0.446 <0.01

900 local .3474.112 .250+.103 t1 5 8 5.590* 0.16

global .6834.101 .717+.099 t1 58 =2.090 0.02

10 local .139+.096 .125+.093 t19 7=i.066 <0.01

global .3434.076 .3954.099 t1 9 7=4.091* 0.07

• = statistically significant
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TABLE 3

Comparison of Transition Data
For Four Different Display Conditions

MEASURE
OBSERVER TRANSITION DISPLAY ITRANSITION t-STATISTIC OF EFFECT

CONDITION' VALUE P<0.004 MAGNITUDE
( )2)

JF local A .228+.113

B .2414.110 t17 8=0.786 <0.01

C .186+.149 t17 8 =2.077 0.02

D .171+.137 t17 8=2.966* 0.04

global A .553+.073

B .5724.100 t17 8=1.448 <0.01

C .6344.121 t17 8=5.261* 0.13

D .657+.123 t 178=6.690* 0.20

TKD local A .321+.157

B .314+.147 t1 5 8=0.312 <0.01

C .2264.134 t19 8 '4.646* 0.09

D .292+.156 t1 58 =1.163 <0.01

global A .818+.138

B .871+.108 t1 5 8 -2.573 0.04

C .865+.097 t19 8 -2.784 0.03

D .737+.075 t,15 8 06.584* 0.06

- statistically significant

for explanation of letters see caption of Figure 3
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TABLE 4

Model Parameter Values [Equations (1)-(4)1

PARAMETERS VALUES

N 12.0
h 30.0 0

1.0
A 10.0

r e 1.0

r . 1.0

%)e 0.5

ee 9.0

.)j 0.174

0 . 8.0

bee 25.5

'Tee 77.0

b ie 22.95

die 115.5

b 22.95

d~e i115.5

b ii 30.6

d'i 157.8

A[ 28.88 (observer JF)
31.75 (observer TKD)

----------------------------------------



FIGURE CAPTIONS

Figure 1. Data from two observers (JF,TKD) showing the

transitions in the percept of motion direction for two different

histories of stimulus exposure (shown by arrows). The solid

circles indicate the proportion of "signal" dots required for the

transition from random, local motion to global, upward flow (G);

the open circles indicate the proportion required for the

transition from global, upward flow to random, local motion (L).

Error bars represent one standard deviation. The range of the

signal distribution was 900. The separation between transition

points within each panel is a measure of hysteresis. Step size,

00.9

Figure 2. Hysteresis profiles from the same observers at signal

ranges of 1800, 90° and 10. Note the narrowing and leftward

shift of the profiles with decreasing signal range. Step size,

0.9° .

Figure 3. Comparison of results from observer JF for A) original

display parameters, B) four-fold decrease in dot density, C)

g four-fold decrease in display area and D) four-fold decrease in

display area plus displacement of field 80 into nasal periphery.

The open symbols represent "local" transition data; the closed

I



symbols, "global" transition data. The signal range is 900 for a

0.90 step size.

Figure 4. As in Figure 3, for observer TKD with a signal range

of 1800 and a step size of 0.10.

Figure 5. The format here is as in Figure 2, but with additional

data for the 0.10 step size indicated by square symbols. The

dashed lines mark the transition points calculated from a

cooperative model (see text). Note that the model captures both

the leftward shift and narrowing of the hysteresis profile with

decreasing signal range.
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Project Two:

Role of eye movements in
improving direction discrimination

William Kosnik, John Fikre,
and Robert Sekuler

1
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Practice improves an observer's ability to discriminate

one direction of movement from another highly similar direction

of movement (Ball and Sekuler, 1982). This improvement in

discrimination has two noteworthy features, directional selec-

tivity and persistence. More particularly, the improvement is

restricted to directions that are similar to the one with which

the observer has practiced, and the improvement endures for

several months without noticeable decrement. We sought to clarify

the origin of this direction-specific change in discrimination.

Basically, improved direction-discrimination could be

achieved through two different routes. For one, the route may be

purely visual, possibly reflecting changes in the selectivity of

neurons at some stage of the visual system. Alternatively, the

route may be. sensori-motor, with the observer learning to use

tracking eye movements to discriminate between two directions.

In support of this second possibility McHugh and Bahill

(1985) have shown that an observer can learn to use smooth

pursuit movements to track a novel target and that the movements

are specific to the waveform of the target. They have also shown

that, once learned, the observer retains this ability over a long

period of time. Given this ability of the oculo-motor system, we

sought to determine if eye movements play a role in an observer's

lea-ning to discriminate the direction of moving targets.

In their original paper Ball and Sekuler (1982) did

measure the eye movements of two observers and found steady



fixation with high levels of performance. However, significant

questions about the role eye movements remained unanswered.

Because their recording system could not resolve eye movements

smaller than approximately 45 minutes of arc, Ball and Sekuler

were unable to rule out the possibility of small, but visually

significant, eye movements. This possibility gains importance

since the stimulus duration they used, 500 msec, might prevent

very large pursuit movements anyway. More importantly, though,

they neglected to record eye movements at different stages of

training. Therefore, it remains possible that changes in eye

movements migI.t have played some role in the observed change of

performance.

We decided to investigate sensori-motor contributions

to direction discrimination more thoroughly by analyzing an

observer's eye movements at the beginning and end of training

using an eye tracking device that is capable of resolving

movements of about one minute of arc.

METHOD

Observer

The observer was a 20-year old male who had never

participated in a psychophysical study before. He was paid

$7.50/hour for his participation. Also, to insure high

motivation, he received an additional one cent for every correct

response. This was the same motivational device used in the

earlier work on motion discrimination (Ball and Sekuler, 1982).

The observer viewed the stimulus display with the right eye;



the other eye was occluded with an opaque patch.

Apparatus

The experimental set up was similar to that used by Ball and

Sekuler. The stimuli were 512 spatially-random dots moving in a

uniform direction at 10 degrees per second across the face of a

cathode ray tube (CRT). The dots were plotted under computer

control at a framerate of 28.5 Hz, again similar to that used in

the earlier study. The dots, which appeared within a circular

aperture of 5 degrees, had a luminance of 104 cd/m 2 . They were

easily visible against the CRT's luminance of 2.06 cd/m . A small

fixation point was provided in the center of the screen.

Procedure

A trial consisted of two stimulus presentations, each

lasting 640 msec (except on the first day of training, when each

presentation lasted 512 msec). The two presentations were separ-

ated by a interval of 1.25 sec, during which the CRT was blank.

The directions of movement of the dots within the two

presentations were either the Same -- in both presentations

the dots moved in a direction of 90 degrees from horizontal

(upward)-- or Different --during one interval the dots moved

upward and in the other interval the dots moved either 3 degrees

to the left (930) or 3 degrees to the right (870) of upward. Same

and Different trials were randomly presented with equal

probability. For Different trials the computer randomized whether

the upward movement would occur in the first interval or in the

second. Also for Different trials the two non-upward directions,



870 and 930, occurred randomnly, Dut equally often.

After each trial the observer judged whether the two

directions had been the same or different, that is, whether

both stimuli moved in the upward direction or whether one

moved in the upward direction and the other moved in a direction

other than upward. A computer-generated tone provided knowledge

of the correctness of the observer's response.

Training comprised an extended series of discrimination

trials in blocks of 32 trials each. Because half the trials

were Same and half Different and because there were two stimulus

presentations per trial, every block of 32 trials yielded 64

stimulus presentation intervals -- 48 in which movement was

upward, 8 in which movement was in a direction of 870 degrees,

and another 8 in which movement was in a direction of 930

degrees.

On the first day of training four blocks of 32 trials

were run. On subsequent days ten blocks of 32 trials each

were run. A rest was given after each block. Training was spread

out over eight days.

Eye movement recording

Two dimensional eye movements were measured from the

observer's right eye by an Scientific Research International

(SRI) dual Purkinje Image Eye Tracker (Mark IV). This electro-

optical instrument determines the instantaneous position of the

eye from two reflections of a narrow infrared beam projected into

the eye. One reflection originates from the anterior surface of j



the cornea (the first Purk.je image) and the other from the

posterior surface of the lens (the fourth Purkinje image).

Rotational eye movements are derived from the difference in the

relative position of these two images.

The Eye Tracker's noise level was determined by tracking

a stationary, artificial eye. Expressed as the standard

deviation of the sampled positions of the stationary artificial

eye, the Eye Tracker's noise level was 0.43 minutes of arc in the

horizontal channel and 0.40 minutes of arc in the vertical

channel.

The gain factors for the instrument's horizontal and vertical

channels were determined by a calibration procedure in which the

observer fixated a target on the CRT. This target made five steps

first along the horizontal axis, and then the vertical axis, in

increments of 0.25 degrees. At each increment, when the observer

was satisfied that he had achieved good fixation of the target,

he pressed a switch, triggering a 640 msec period of data

collection. The target then moved to its next position. This

procedure continued until eye positions had been recorded in

response to five stimulus positions along the horizontal axis and

[j five along the vertical axis.

After the calibration procedure, we fit a least squares

regression line to the recorded eye positions that were plotted

against the corresponding stimulus positions. Separate

regression lines were fit to horizontal eye positions and to

vertical eye positions. Horizontal and vertical gains were

= u n 4n-0



obtained from the regression coefficients of those regression

lines. We estimated the accuracy of fixation from the correlation

between the target positions and the eye positions. This

correlation coefficient was at least 0.99 for each axis.

Eye position records obtained from four blocks of trials on

the first day of discrimination training were digitized at a rate

of 500 Hz and stored in computer memory. A 500-Hz sampling rate

was used in order to accommodate the full, 200-Hz bandwidth of

the recording instrument. Eye positions were collected

throughout the 512 msec stimulus presentation. This yielded one

eye position record of 256 data points.

On subsequent training days a 640 msec stimulus presentation
4

interval was used. This change was necessitated by the intro-

duction of a low pass filter in the data collection system on

the second training day, as explained below.

On the last day of training, we measured eye positions

during the last five blocks of discrimination training. The

data were low pass filtered at 50 Hz (-36 dB/octave) prior

to being digitized at a rate of 100 Hz. These recording

parameters required a 640 ms stimulus presentation, but resulted

in a considerable savings in computer storage without' loss of

significant eye position information. Thus, each eye position

record collected on the last day of training contained 64 data

samples.

Editing eye position records. A continuous record of the

status of the Eye Tracker was obtained at the same time that an

41



eye position was being recorded. This record contained

information about the occurrence of eye blinks and occasional

interruptions of tracking. If an eye blink occurred or if

tracking had been interrupted at any time during a record,

the entire record was omitted from the analysis. In addition,

since we wanted to know whether the observer was tracking

the moving stimulus, we eliminated records that contained

saccades. In particular, "ny record containing a saccade

with a velocity greater than 300 per second was omitted from the

analysis.

Results

Discriminability

The observer's discrimination performance for each block of

trials was expressed in units of d' (Swets, 1964), computed from

the proportion of Different trials correctly identified as

I "different" (that is, hits) and the proportion of Same trials

incorrectly identified as "different" (that is, false alarms). A

'I discriminability score for one day was obtained by averaging

I across all blocks of trials run on that day.

The first question that needs to be answered is whether

I the observer's discrimination performance changed with practice,

and, if it did, whether such changes mirror those previously

reported by Ball and Sekuler. To answer these questions we have

I portrayed in Figure I the observer's discrimination performance

over the eight days of training. To facilitate comparison we have

I plotted on the same axes the results of Ball and Sekuler (1982),



which represents the avereae performance of eight observers. Note

the similarity of the two curves, each demonstrating a steady

improvement in performance and reaching the same high level of

discrimination.

Eye Movements: Orientation

Next we wanted to determine if the improvement in discri-

mination was mediated by the observer's having learned to track

the stimulus. Since tracking eye movements would cause successive

samples of eye position to lie along a straight line, we

developed an estimate of the main axis along which the eyes moved

during each stimulus presentation. We called this estimate the

dominant orientation. To obtain this dominant orientation, t'e

eye positions recorded during an presentation interval were

represented in two dimensions and a least squares regression line

fit thereto. The slope of this line, expressed in degrees from

the 00 meridian, defined the dominant orientation of the eye

movements.

To illustrate this procedure two eye position records are f
shown in Figure 2; the dominant orientations have been drPon

through the sampled eye positions. For each record, the F ratio

associated with the regression coefficient is highly significant:

F-898.6 and F-110.4, for the top and bottom panels respectively,

both df-1,253 and p<0.0001.1

Table 1 gives the mean dominant orientation of the eye

positions recorded during the first and last days of training.

These dominant orientations have been sorted according to
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stimulus direction, with the 870 direction in the first column,

the 900 direction in the second, and the 930 direction in the

third. Measurements made at the beginning of training are

represented in the top row and measurements from the end of

training are represented in the middle row. Note that

orientations are expressed as axial values, meaning that 00 and

1800 are equivalent to one another. Orientations take on values

from 0 to 1790. Means and variances are computed using statistics

for directional data (Mardia, 1972). Standard deviations are

shown in parentheses, with the number of trials included in the

average shown in brackets.

As can be seen in the top row of Table 1, the mean dominant

orientation for records at the beginning of training was centered

near the horizontal axis (0-1800) for all three stimulus

directions. Also note that there is no correspondence between the

change in direction of the stimulus movement and the dominant

orientation. A change in stimulus direction from 900 to 870 --a

shift of 3 to the right-- is not accompanied by a corresponding

change in the dominant orientation. Instead, the dominant orien-

tation shifted from 1680 to 1760, a net change of 80 to the

left. A change in stimulus direction from 900 to 930 (a shift of

30 leftward) also failed to elicit a corresponding change in

dominant orientation. Here, the dominant orientation shifted 60

to the right.

An examination of the middle row of Table 1 shows no better

correspondence between stimulus direction and dominant orien-



tation at the end of training. Again, the mean dominant orien-

tation at the end of training was close to the horizontal axis

for all three stimulus directions. In response to stimulus

movement of 900 the dominant orientation is 240. A change in

stimulus direction of 30 to the left or right of vertical was not

followed by a similar change in dominant orientation. In fact,

the mean dominant orientation was 170 for both off-vertical

stimulus directions.

So that the reader can better appreciate the variability

in the obtained dominant orientations, Figure 3 shows the

distribution of the dominant orientations cumulated over

presentation intervals. These are the distributions that Table 1

summarized. The upper portion of Figure 3 portrays data collected

at the beginning of training and its middle portion portrays data

from the end of training. Each column represents one direction

of stimulus movement: 870, 900, or 93°  a
Note that for neither the beginning nor the end of training

is there any obvious systematic relation between the dominant

orientations and the direction of the stimulus motion. Moreover,

there is no systematic change in the distribution of dominant

orientations from beginning to end of training.

Eye Movements: Maqnitude

Having characterized the dominant orientations of the eye

position records, we then wanted to determine the linear

distances the eye travelled along the dominant orientations. The

magnitude of the dominant orientation was measured along the

4S



length of the regression line. The limits of the regression line

were determined by finding the maximum and minimum values of one

of the coordinates --either x or y-- and then computing the othe.

coordinate from the regression equation. The distance between

these two pairs of coordinates defined the magnitude of the

dominant orientation of the eye position record. The lines of

best fit in Figure 2 have been drawn to correspond with this

definition.

We used this measure of eye movement magnitude, rather

than the total distance the eye moved during a stimulur presen-

tation, because, within any one stimulus presentation, the eye

often moved in several different directions as well as back and

forth along the same direction. Since we were mainly concerned

with eye movements used to track the stimulus, we wanted a

I magnitude measure that would characterize the linear distance the

j eye would have moved to track a stimulus moving in a single

direction. The length of the regression line defined by the

I limits of the eye position record best estimates this distance.

Table 2 lists the mean magnitude of the dominant orientation

I for all eye position records from a given day of training.

[r The top row of the table lists the magnitudes from the beginning

of training and the middle row from the end of training. Columns

I represent different stimulus directions. At both the beginning

and end of training just one minute of arc separates the dominant

magnitude associated with the three stimulus directions.

I Averaging across the three stimulus directions, less than two

4'I



minutes of arc distinguishes the mean dominant magnitude at the

beginning of training from the comparable value at the end of

training.

Note that across all stimulus directions and across days of

training the mean dominant magnitude was very much smaller than

the distance %ravelled by the stimulus on either the first or

last day of training --5.10 on the first day and 6.40 on the last

day. The distributions of magnitudes associated with each

stimulus direction are shown in the top and middle portions of

Figure 3. These magnitudes range from 5.4 to 30.0 minutes of arc.

Supplementary Measures

To furthe+ characterize the eye movements made during

discrimination training we measured eye movements under two

additional conditions. In the first condition the observer

was instructed to track the moving stimulus. In the second

condition eye movements were recorded while the observer simply

fixated a stationary fixation point with the stimulus absent.

Eye Movements: Intentional Tracking. The mean dominant

orientations measured during intentional tracking are shown

in the bottom row of Table 1. These orientations are very

similar to the stimulus directions. Tracking eye movements

to the 90 and 93 stimulus directions deviated on average

just 20 from those directions. In response to the 870 stimulus

the dominant orientation was 790, indicating an error in tracking

of 80 to the right. Nevertheless, the directions of the tracking

eye movements were in the correct relation to the direction of
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the stimuli.

The distributions of the tracking dominant orientations

for each stimulus direction are shown graphically in the bottom

row of Figure 3. It can be seen that the dominant orientations

cluster near the direction that the target moved. Also, note the

narrow distribution of the tracking eye movements for each of the

three stimulus directions.

The bottom row of Table 2 shows the average magnitude

of the eye movement records taken while the subject attempted

to track the stimulus. When the observer attempts to track

the target, which moves 6.4 degrees, his eye moves a mean

distance of 1.75 degrees. This tracking distance is nearly

ten times greater than 0.18 degrees, the mean magnitude of the

dominant orientation during discrimination training in which the

observer was not instructed to track.

I The distributions of the magnitudes of the tracking eye

movements for each stimulus direction are illustrated in the

I bottom portion of Figure 3. The size of these movements ranged

from 17 to 169 minutes of arc.

Eye Movements: Fixation. We then recorded eye positions

I while the observer was fixating a stationary target with no dots

present. We compared these records to ones obtained under

I conditions of discrimination training, in which both moving dots

and a stationary fixation target were present.

In the absence of moving dots, the observer's mean dominant

I orientation is 1590 (SD - 26.8). The magnitude of the dominant
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component during fixation is 13 minutes of arc (SD = 7.45). These

values are similar to the measurements obtained during training

(see first two rows of Table 1). So the observer maintained

approximately the same degree of fixation either while fixating a

point on an otherwise blank screen, or while fixating the same

point superimposed on a field of moving dots.

Discussion

Improvement in the discriminability of the direction

in which targets move does not depend on the observer learning

to track the moving target. For one thing, the eye movements

recorded during training bore little resemblance to eye movements

obtained when the observer deliberately tracked the stimulus.

Neither the orientation nor the magnitude of the dominant linear

component extracted from the eye position records matched the

direction or distance the stimulus travelled. Dominant orien-

tations were closer to the horizontal axis than the vertical

axis, along which the stimulus moved. There was also consi-

derable variability in the dominant orientation of the eye

position records. The magnitudes of the dominant linear compo-

nent of the eye position records were about 32 times smaller than

the extent of the stimulus movement.

Also, the size and dominant orientation of eye movements

were unchanged from the beginning to the end of training,

although discriminability changed dramatically. In fact,

both at the beginning and the end of training eye movements

closely resembled fixation eye movements in magnitude and
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orientation.

In contrast to the lack of tracking eye movements during

training, the observer was clearly able to track the stimulus

when asked to do so. Here, the direction of tracking eye

movements closely approximated the direction of the stimulus

movement and the size of the tracking movements were about 10

times larger than the average magnitude of the dominant orien-

tation of the eye position records during training.

Because the mean magnitude of tracking movements was

only 1.750, we were curious to discover why the tracking eye

movements were smaller than the 6.4 degrees travelled by the

stimulus. Three factors may be help to explain this difference.

First and most important, it was clear from the tracking records

that the observer did not track at the same rate of the stimulus

movement. The observer tracked at a rate of about 6 /sec instead
of the 100/sec rate of the stimulus. Since the stimulus was a

display of moving dots that continually filled the screen, the

observer could follow the direction of the moving dots without

having to fixate on a single dot. Thus, the distance covered

while tracking the display could be less than the distance

covered while tracking a single dot. Second, although the dots

moved a total of 6.40, the diameter of the viewing aperture

was only 5° . Thus, the maximum distance the observer could

track the stimulus would be only 5° . Third, at the start of

testing, the observer reacted to the onset of stimulus movement

with an appreciable latency, about 200 msec. Such a delay in the
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start of tracking would shorten the total tracking distance.

Taken together, these three factors account for the shorter mean

distance of the observer's tracking eye movements compared to the

distance the target moved.

We found that after some practice at tracking, the observer

managed to reduce the latency of his tracking response to as

little as 10 msec. This finding is consistent with the report of

McHugh and Bahill (1985) whc found that observers were able to

learn to track a target that had a predictable onset with no

delay.

Finally, our results have answered the question with

which we began: improvement in direction discrimination with

practice is the product of a change in a visual process, rather

than some change in sensori-motor response. With this clarifi-

cation in hand, research can now attempt to delineate the visual

processes that give rise to long-lasting, direction-specific

improvement in discrimination.

!
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Footnote

1. Note that our procedure for estimating dominant orientation

of the eye positions assumes that the eye's excursions can be

described by a linear function. Although a record may be

associated with a significant regression coefficient, it does not

imply that it can be completely described by a linear model. A

test of the lack of fit to a linear model shows a significant

departure from linearity in the top panel (F=2.35, df=39,214, a<
.001), but not in the bottom panel (F=0.91, df=23,230). The

record in the top panel departs from linearity because it

contains other non-liiear components. Since our main concern is

to discover if the eye moved in the same direction as the

stimulus, by assuming that each record contains a significant

linear component, it would be possible to find out if the

orientation of this linear component matches the direction along

which the stimulus traveled.

I
I
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Table I

Mean Dominant Axial Orientations of the
Eye Position Records (in Degrees)

Training Session Stimulus Direction

870 900 930

Beginning 176 168 162
of (18.5) (20.3) (19.8)

Training [28] (172] [27]

End 17 24 17
of (26.5) (27.3) (19.8)

Training [40] (235] [40]

Intentional 79 88 91
Tracking (2.67) (2.39) (1.30)

Note-Standard deviations are shown in parentheses; the number
of orientations included in each mean is shown in brackets.



TABLE II

Mean Magnitudes of the Dominant Axial Orientations of
the Eye Position Records (in Minutes of Arc)

Training Session Stimulus Direction

870 900 930

Beginning 12 11 11
of (3.66) (3.18) (2.64)

Training (281 [172] [27]

End 11 10 10
of (7.80) (4.32) (2.82)

Training (40] [235] [40]

Intentional 96 100 122
Tracking (30.1) (37.9) (36.2)

Note-Standard deviations are shown in parentheses; the number
of orientations included in each mean is shown in brackets.

I

I
I
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Figure Captions

Figure 1. Discriminability (d') of the direction of a moving

target as a function of the number of training days. The

figure compares the performance of the observer in this study

(B.McH.) with the average performance of eight observers in the

Ball & Sekuler (1982) study.

Figure 2. A two dimensional eye position record collected

during one stimulus presentation is displayed in each panel. A

least squares regression line is fit to each record and represen-

ts the dominant axial orientation of the eye position record.

The length of the regression line defines the hypothetical

distance the eye moved along its dominant orientation. The

calculation of this distance is described in the text. Note that,

although the two records are well described by a straight line,

the record in the top panel departs significantly from a linear

model whereas the record in the bottom panel is completely

described by a linear model (see footnote 1).

Figure 3. Distributions of the dominant axial orientations

of the eye position records arranged according to recording

session and direction of stimulus movement. The figure also

displays the magnitudes of the orientations. Note that the

beginning and end of training magnitude records are plotted on a

scale of 60 minutes of arc; the magnitudes recorded during



intentional tracking of the stimulus are plotted on a scale of

300 minutes of arc.

I
I
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Project Three:

Direction Perception in
Complex Dynamic Displays:

The Integration of Direction Information

Scott Watamaniuk, Robert Sekuler,
and Douglas W. Williams
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INTRODUCTION

Though motion perception does depend upon spatially local

processes, under certain circumstances global processes make an

important contribution. For example, the human visual system can

integrate different, spatially-intermingled motion vectors into a

global percept of motion in a single direction (Adelson and Movshon,

1982; Williams and Sekuler, 1984). Such integrated percepts may

offer important clues to the mechanisms of motion perception. To

exploit such clues we have followed the tradition of using

discrimination performance to probe underlying psychophysical

mechanisms (eg., Graham, 1965; Wilson and Gelb, 1984). Specifi-

cally, we were interested in how easily observers coula discriminate

between two different global motions when each had resulted from the

integration of many different motion vectors.

Our stimuli were random dot cinematograms in which each dot took

an independent two-dimensional random walk with steps of constant

size. The direction any dot moved, from one display frame to the

next, was independent of the dot's previous movements as well as the

movements of other dots. All dots chose their directions of

movement from the same probability distribution. Williams and

Sekuler (1984), using uniform distributions of directions, showed

that the resulting global percept of motion depends upon the range

of the distribution. Specifically, uniform distributions with

ranges of directions less than 1800 tend to produce a perception of

global motion in the approximate direction of the distribution's
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mean even though the random perturbations of each dot are evident.

As the range increases further, the perception of global motion

diminishes, until at the limit, a uniform distribution with 3600

yields a percept of only local random motion of individual dots. In

this present study, we measured the discriminability of the

direction of global motion using Gaussian distributions of

directions.

To anticipate, our results show that direction discrimination of

the global motion percept is influenced by both the bandwidth of the

controlling direction distribution and duration of the stimuli, but

not by the paths travelled by individual dots over time. As will be

shown later in the discussion, our data are consistent with a line-

element model described previously by Williams et Al. (1984).

METHODS

Stimuli

Stimuli were 256 computer-generated dots plotted on a cathode

ray tube (CRT) display with a relatively fast, P4, phosphor. A

mask, with a circular aperture 80 in diameter, covered the face of

the CRT. This aperture allowed only about 130 of the 256 dots to be

visible at any one time. The density of dots was 2.56 dots per I
square degree of visual angle. Each dot subtended 6'. Luminance of

a single dot was about 0.82 cd/m 2 . The luminance of the mask was

0.07 cd/m2; the veiling luminance was 0.03 cd/m2 .

Stimuli were presented at a frame rate of 17.5 Hz. From frame

to frame, each dot's movements were controlled by a predefined

distribution of directions stored as an array of x- and y-

increments. The predefined distribution of directions chosen was



Gaussian. 1 The computer read the increment values for a dot's

movements from the array, added the increments to the dot's current

position and transmitted the dot's new x- and y-position to the CRT

display via digital-to-analog converters. The initial screen

location of each dot wps randomized for each presentation, rendering

the pattern of dots an unreliable clue to direction.

Supported and restrained by a chin-headrest, the seated

observer viewed the CRT monocularly from a distance of 57 cm. The

non-preferred eye was covered by a translucent patch. The height of

the CRT was set so that the center of the aperture was at approx-

imately eye level and observers were required to maintain fixation

on a dot located at the center of the aperture. Push-buttons

connected to the computer initiated each trial and signalled the

observer's responses.

Observers

One of the authors (SW) and four university students served as

observers for all experiments. Except for SW, all observers were

naive to the purposes of the present experiments and had normal, or

corrected-to-normal, visual acuity. Those who required corrective

lenses wore them for all experiments.

Procedure

Stimuli were presented in a two-alternative forced-choice

procedure. Though the durations of the paired test intervals varied

from condition to condition, on any single trial the two were always

of equal duration. Interstimulus interval was fixed at 500 msec.

Different distributions of directions governed motion in the
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two intervals of each trial. One test interval, picked at random,

was governed by a distribution whose mean direction was 90 deg

(upwards); we'll refer to this stimulus as the standard. Motion in

the other test interval was governed by a distribution whose mean

was greater than 90 deg (that is, counterclockwise of upwards);

we'll refer to this stimulus as the comparison. The observer had to

identify the interval in which the global direction of motion was

upwards.

A session consisted of six blocks, 48 trials each. A block of

trials was characterized by one combination of direction bandwidth

and test-interval duration. In order to produce a large range of

discrimination performance, from chance to near perfection, six

comparison stimuli with different mean directions were used in each

block. Trial-wise feedback was provided, with a low tone signalling

an incorrect response. Approximately four seconds elapsed between

trials. Over any 48-trial block, the standard stimulus appeared

equally often in the first and second intervals.

EXPZRIMENTS

Experiment I. Bandwidth and Duration

This experiment examined direction discrimination as a function

of i)the directions present in the stimulus, and ii)stimulus dura-

tion. Four ranges of directions were used, each defined by a

different Gaussian distribution of directions. The distributions

had standard deviations (SD) of 0.0,2 17, 34, and 51 deg. Larger

standard deviations, or bandwidths, imply a greater range of

directions was simultaneously present in the cinematogram. All

standard deviations used produced global motion in the approximate



direction of the mean of the distribution.

A pilot study showed that discrimination varied with bandwidth.

So, to span the psychometric functions of each bandwidth, sets of

comparison stimuli with different means were needed. Table I lists

the six comparison means associated with each bandwidth. Five

durations of presentation, three, six, nine, 12, and 25 frames, were

completely crossed with the four bandwidths. For each combination

of bandwidth and duration, an observer was tested on a total of 288

trials.

Table 1 about here

Analysis

Responses were aggregated to yield the percent correct for each

combination of standard and comparison. The percent correct

responses for individual observers were then fit by the Quick (1974)

psychometric function, given by

I(S)-I-2- (k *S)P

3 where S is the separation in mean direction between the standard and

comparison stimulus, measured in deg, 1/k is the difference between

'1 standard and comparison means at which W(S) equals 0.5 (chance

performance), and P determines the maximum slope of the function in

I the neighborhood of 75% correct. This function provided good fits

to the observed data (mean r2 for 100 data sets was 0.89).

I Discrimination thresholds, defined as the difference between

standard and comparison mean directions sufficient to yield 75%

I



correct, were evaluated from the fitted psychometric functions.

Threshold values were then treated by analysis of variance (ANOVA)

including a trend analysis on the two variables.
3

RESULTS

Discrimination thresholds, averaged over observers, are plotted

as a function of bandwidth in Figure 1. As the figure shows,

discrimination thresholds for each duration increased with stimulus

bandwidth. Generally, discrimination thresholds changed relatively

little as stimulus SD was increased from 0.0 to 17 degrees, but

changed substantially with further increases. This observation was

confirmed with a trend analysis of the data averaged over durations,

which yielded significant linear and non-linear components (F!,2 =

5520.72 and E2,4 = 8.45, both P<0.05). Notice that at the smallest

bandwidths, the discrimination thresholds for the four longest

durations are indistinguishable. However divergence does occur as

bandwidth gets larger. In contrast, the results at the shortest

duration, three frames, differ from those of other durations at all

bandwidths. This interaction between bandwidth and duration was

confirmed by the ANOVA (E12,24 = 13.03, P<.05). This implies that

as bandwidth grows, it may take longer to perceive the global flow.

It is clear however, that regardless of bandwidth, discrimination

thresholds obtained with the briefest presentations are consistently

higher than those obtained with longer ones.

Figure 1 about here

To more clearly show the effect of duration, we have replotted
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the data as a function of duration in Figure 2. The figure shows a

progressive decrease in discrimination threshold as a function of

duration (linear trend F1,2 = 256.74, F-<0.05). However, the

decrease in threshold with duration also contains non-linear

components (E3 ,6 - 14.72, P<0.05). A larger dccrease occurred when

duration was increased from three to six frames than when duration

was increased from 12 to 25 frames. Moreover, discrimination

thresholds for the two smallest bandwidths seemed to reach an

asymptotic level between six and 25 frames of duration. In

contrast, for the largest bandwidth, each increase in duration

produced a further decrease in the discrimination threshold.

Figure 2 about here

Experiment II. Effective Dot Path

In Experiment I, discrimination thresholds increased as

bandwidth increased. However, because several aspects of the

stimuli covary with bandwidth, that experiment does not allow

unequivocal inferences to be made about the cause of the threshold

increase. By definition, the number of directions contained in a

stimulus increases with bandwidth. So, as bandwidth increases, the

path taken by any single dot contains a greater variety of direc-

tions. This greater variety might itself have increased the

variability of the perceived global direction, thereby impairing

global direction discrimination for the stimulus as a whole. We

wanted to determine, therefore, how discrimination performance might

vary with the number of directions occurring in each dot's path.

To answer this question, we created two stimuli that produced
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very different individual dot paths but had the same aggregate

direction distribution. Both types of stimuli are illustrated in

Figure 3. In one, dots took a two-dimensional random walk as

described earlier. Because each dot's path was random, within

limits imposed by the distribution bandwidth, we'll refer to such a

stimulus as the randm- a ah type. Such paths are represented in

panel A for two different dots. In the other type of stimulus, a

different scheme generated a dot's path. Once a dot had randomly

chosen a direction for its first displacement, it continued to move

in that same direction for the entire presentation. Because each

dot moved along its own characteristic fixed path, we'll refer to

such a stimulus as the f ath type. Such paths are re.reseinted

in panel B for two different dots. Note that although the aggregate

direction distributions for both stimuli are identical, the

variability of their dot paths are very different. In the random-

R± stimulus, the controlling distribution of directions creates

differences between different dots' paths, and also introduces

randomness to any single dot's path. In the fixe-pth stimulus,

the controlling distribution affects only differences between

different dots' paths.

Figure 3 about here

The two stimulus types were used to produce three test

conditions. In one condition, both presentations within a single

trial were fixed-path stimuli (fixed-path condition). In a second

condition, both presentations were random-path stimuli (random-path

condition). In the third condition, one random-path and one fixed-
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path stimulus were presented on each trial (combined condition).

In this last condition, the two types of motion were completely

crossed with respect to which served as the standard or comparison

and also their presentation order.

Discrimination performance was measured for six separations

between the standard and comparison mean directions: 2, 4, 5, 6, 8,

and 10 deg. All stimuli had a Gaussian direction distribution with

a standard deviation of 34 deg. Each stimulus was presented for

nine frames. This bandwidth and duration were chosen because in

previous experiments this combination produced a moderate level of

performance. This ensured some latitude for discrimination

performance to improve or grow poorer as condition varied from

random-path to fixed-path. Observers were the same as those in

Experiment I.

RESULTS

The data, averaged over observers and represented as percent

correct, are plotted as a function of the difference in mean

direction between the standard and comparison stimuli in Figure 4A.

The figure shows that all three conditions yielded similar discrim-

ination (E2,8 = 1.22, P>.05).

Figure 4 about here

At the duration used in this experiment, nine frames, the two

types of motion were different. However, if one looked at the

stimuli through a narrow time window, in particular, examining only

a single pair of successive frames, the minimum needed to define

motion, the two types of stimuli would be indistinguishable. We



were concerned, therefore, that this short-term similarity between

stimuli might account for the similarity in performance with the two

types of motion. This concern would be serious if performance had

become asymptotic at a presentation of just two frames. Then,

observers would have extracted all the necessary stimulus

information before any real differences between stimulus types could

have become manifest. But for our experiments this concern is not

justified.

Results from Experiment I show that asymptotic performance in

Experiment II would certainly have required presentations longer

than just two frames. In Figure 4B we have plotted the average of

the earlier results for the stimulus with an SD of 34 degrees

presented for three frames, the shortest presentation used. The

averaged results from the present experiment, for both stimulus

types, are also plotted in that figure. Recali that all cinemato-

grams in that earlier experiment were of the type we've labelled

"random path". Note that performance with presentations of only

three frames in Experiment I was far below that obtained in

Experiment II, with nine frames. Therefore, within just two frames,

observers in Experiment II had not extracted all the necessary

information to determine the direction of motion. So, the identity

of random-path and constant-path stimuli over the first two frames

of presentation cannot explain the lack of performance difference

between the stimuli at nine frames.

The results of Experiment II suggest that individual dot paths

over frames are not being used by the visual system in determining

the direction of global perceived motion. Rather, perceived global

direction seems to depend only upon the distribution of directions

of motion present from one frame to the next. That is, the visual
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system keeps track of the directions created by any one displacement

but does not keep track of the successive movements, over frames, of

individual dots.

DISCUSSION

As stated earlier, one of the major objectives of this research

is to account for our results with a line-element model of direction

discrimination. Before discussing the model, it will be useful to

relate our results to those in the literature and discuss the

implications that these results hold for research in motion

perception.

We have found that direction discrimination of random-dot

cinematograms depends upon certain stimulus dimensions. First,

increasing stimulus bandwidth decreases direction discrimination.

Further, increasing stimulus duration results in an improvement in

discrimination performance. However, in developing its represen-

tation of global direction, the visual system appears to disregard

information about individual dot paths over time.

Williams and Sekuler (1984), using stimuli similar to that used

here, found that global motion in a single direction was always seen

when the range of the uniform direction distribution was less than

or equal to 180 deg. Experiment I showed that, although unidirec-

tional global motion was always perceived, as the bandwidth of the

direction distribution increased so did the discrimination

threshold. The present results suggest that although coherent

global flow can be created by any one of a wide range of bandwidths,

the precise direction seen may not be as predictable. In other

words, the directional bandwidth controls the precision with which

the perceived direction matches the mean of the direction distribu-A



tion.

Experiment I also provided some indication of the integrative

power of the visual system in determining direction of motion.

Figure 1 showed that direction discrimination did not change

significantly when the bandwidth of the stimulus was raised from

SD=0.0 to SD=17 deg. This occurred even though the two distri-

butions produced highly distinguishable patterns of movement. The

visual system seems to extract and integrate directional information

just as easily from stimuli containing many different directions

(the stimulus with an SD of 17 deg contained 79 different directions

of motion) as it does with only a single direction present.

But bandwidth was not the only variable that influenced discri-

mination. Stimulus duration also had an impact: as the duration of

the stimuli increased, direction discrimination improved. This

implies some sort of temporal summation in the process that governs

perceived direction of motion. Note that the number of frames

needed to reach asymptotic performance is not the same for all

bandwidths: as bandwidth decreases, fewer frames are needed to

produce asymptotic performance.

Experiment II examined the effect of dot path on discrimina-

tion. The results showed that when direction distributions were

identical, whether the dots took random walks or followed fixed but

different paths, discrimination was unchanged. Previously, Williams

and Sekuler (1984) showed that the global percept of motion does not

depend on the spatial relationship between local motion vectors over

time. Our findings agree with this view: when many vectors of

motion are present, the direction of global motion is determined by

the distribution of directions rather than by the individual dot
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paths.

This result also has some methodological, as well as

theoretical, implications. Some researchers, utilizing random dot

displays, have purposely limited the lifespan of individual dots to

restrict the directional information contained within a single dot

path (e.g Mather and Moulden, 1980; Mather and Moulden, 1983). The

present result, that individual dot paths do not affect direction

discrimination, suggests that this control may not always be

necessary. When the stimulus is comprised of many random dots, the

visual system does not necessarily utilize information about the

consecutive movements of individual dots.

THEORY

A Line-Element Model of Direction Discrimination

As stated earlier, one of our objectives was to account for

global direction discrimination with a line-element model. Line-

element models have been successful in accounting for several visual

discrimination tasks involving dimensions such as wavelength and

spatial-frequency (Graham, 1965; Wilson and Gelb, 1984; Wilson and

Regan, 1984; Wilson, 1985). A line-element model has also been

useful for predicting the conditions under which random dot displays

with very different direction distributions would be meamri, that

is indistinguishable perceptually despite their considerable

physical differences (Williams et Al., 1984).

Any line-element model has three defining characteristics.

First, it postulates mechanisms whose sensitivity profiles span the

stimulus dimension of interest. For any stimulus, the total

response of a mechanism is the sum of that mechanism's individual

responses to each component of the stimulus. Second, discrimination
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between two stimuli depends upon the change in a mechanism's

;esponse as a result of a change in stimulus components. Finally,

the differences in responses to two stimuli are pooled over all

mechanisms. This implies that the discriminability of two stimuli

is a function of a scalar value (Graham, 1965).

An example of a line-element model is one Williams &t al.

(1984) used to predict which set of discrete directions of motion

would have to be mixed in order to generate a percept that was

indistinguishable from one generated by a stimulus containing a

broad band of directions of motion. This model comprised a set of

direction selective mechanisms, and the response of the model

depended only upon the component directions of the stimulus. Based

on the success of this line-element model and the demonstration that

direction discrimination depends only upon the distribution of

directions, it seemed reasonable to attempt to fit the present data

with the same model.

In the remainder of the discussion, we will describe the basic

structure of the line-element model that we used to account for the

present data. Parameters of the model will be estimated using data

obtained for stimuli with Gaussian distributions of directions

presented for 12 frames. The same parameters will then be used to

account data obtained with different presentation durations and

predict results for stimuli that had uniform, rather than Gaussian,

direction distributions.

Description of the Model

The basic structure and assumptions of the present model are

are the same as those used to account for motion metamers (Williams

ea. 1984). The present model assumes that the full range of
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directions (3600) is spanned by a small number of evenly-spaced,

bandlimited, directionally-selective mechanisms. All mechanisms have

the same Gaussian profile; center-to-center separation between any

two adjacent mechanisms is equal to the half-amplitude half-

bandwidth of a mechanism.

The sensitivity of the ith mechanism, centered at Oi, to

direction of motion 6 is given by

Si(8) = exp{ - [(0 - i)/h) 2*ln2} [2]

where h is the half-amplitude half-bandwidth of the mechanism. The

response of the ith mechanism to a distribution of directions, D(O),

is given by

360
Ri(D) = X Si(O) * pr{D(O)}, [3)

6=1

where Si(6) is the ith mechanism's sensitivity to direction 0, and

pr{D(6) } is the proportion of dots in distribution D(6) that move in

direction 6.

To predict the discriminability of any two distributions, D(61 )

and D(02 ), with different mean directions, one calculates the

difference, for each mechanism, between its responses to the two

distributions

ARi = Ri{D( ) } - Ri{D(02 )}. [4)

These differences are then pooled for all the individual mechanisms



according to a Qth norm rule:

M
AR = { A i RiIQ}1 /Q, [5]

i=l

where M is the number of mechanisms. AR represents the total
difference between the responses to the two stimuli generated within

the visual system. Note that this method of pooling allows for the

effects of probability summation (Quick,1974).

The variable Q determines the way response differences, AR i ,

for each mechanism will be combined. If Q=1, all ARi's are weighted

equally and the system would be taking the simple sum of all ARi's.

If Q>1, the larger values of AR i are weighted more heavily than

smaller values; if Q=infinity, the model acts as a peak detector,

taking only the single largest value of ARi into account.

In order to relate the predicted values of AR to the data

obtained in Experiment I, we used a psychometric function of the

form:

Y(AR) = I - 2 - {k*AR)P [6]

where k is equal to the value of I/AR at Y(AR)=0.50 and P is related

to the slope of the psychometric function.

The model as described above has four free parameters, two of

which we fixed on a ziri. grounds. Previous researchers, Wilson

and Gelb (1984), have shown that when Q=2, a line-element model

provides good fits to spatial-frequency discrimination data when the

stimuli are presented under sustain temporal conditions. The

7



temporal modulation of their sustained stimulus was Gaussian with a

I/e time constant of about 250 msec. Following Wilson and Gelb, we

decided to use Q=2 in order to fit the data we obtained at a

duration of 12 frames, since at this duration, thresholds for the

three smallest standard deviations first reached asymptotic levels.

This decision left three free parameters, k, P, and M, the number of

mechanisms.

We set M=12 in accordance with Williams et al. (1984) who found

that a model with 12 mechanisms accounted for metameric relations

between cinematograms that contained a wide range of directions and

cinematograms that contained just a few directions. Having fixed Q

and M, we estimated the optimum values for k and P by a least-mean-

squares fit to Experiment I data presented for 12 frames. Table 2

shows the chi-square (X2) goodness-of-fit values obtained for best-

fits to the present data. All X2 values are well below the critical

value suggesting that the model fit the data well.

Table 2 about here

Model Fits for Various Durations

a The model as described above, provided a satisfactory account

of data obtained for stimuli presented for a long duration, 12

'I frames, with Q=2. Since the six-, nine-, 12-, and 25-frame

conditions seemed to be grouped together (see Figure 1), the same

parameters used to fit the 12-frame data were also used to fit the

six-, nine-, and 25-frame data. The predicted values along with the

observed data for the six-frame condition, for all observers, are

presented in Figure 5. Those for the nine-frame condition appear in

7
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Figure 6 while those for the 25-frame condition appear in Figure 7.

Data are shown by the filled squares and the model by the lines.

For all three duration conditions, the model captures the trend of

the data. Chi-square goodness-of-fit values for the six-, nine-,
. X2

and 25-frame data appear in Table 3. The X values for all

observers were below the critical value.

Figure 5, 6, and 7 about here

Table 3 about here

Discrimination thresholds obtained at durations of six frames

or greater appear to be grouped together (see Figure 1). However,

for the shortest presentation, three frames, discrimination was

poorer. Since a model of direction discrimination should account

for this effect of duration, we sought to use the present model to

preaict discrimination for this very short stimulus duration.

Previously, Wilson and Gelb (1984) demonstrated an empirical

relation between Q and stimulus duration. They found that a line-

element model with Q=2 predicted spatial-frequency discrimination

when the stimuli were presented in sustained temporal conditions.

When the stimulus was only presented for about 125 msec (transient

jcondition), Q=2 did not give a good account of the data, but Q=6
did. Since the duration of three frames, in msec, was close to that

of the transient condition described by Wilson and Gelb, we used Q=6

to predict discrimination in the three-frame condition. The values

of k, M, and P remained fixed at the values previously estimated.

Figure 8 compares the model fits to the three-frame data for

all observers, measured for various stimulus standard deviations.

7:



Data are represented by filled squares and the model calculations by

the lines. Across any row, all the graphs show data for a single

standard deviation; within any column, graphs are for a single
X2

observer. Table 3 lists the X values for each observer. Since

there were four standard deviations crossed with six separations,

there were a total of 24 data points per person used in the
X2 X2

calculation of X. As can be seen, all but one of the X values are

below the critical value. Inspection of Figure 8 shows that

although the general trend of the data is captured by the model, the

fits are not particularly good for the largest standard deviation.

The fits would not have been appreciably improved by increasing Q

beyond its set value of six since predictions change little as Q is

raised above this value. This relatively poor fit to the data can

not be reconciled at this time.

Figure 8 about here

Discrimination with Uniform Distributions

We next sought to determine whether the model parameters

developed for long-duration stimuli with Gaussian direction distri-

j butions (Experiment I) could also account for performance with a

different distribution of directions. So we measured direction

discrimination, for the same observers as before, now using stimuli

with uniform direction distributions. The uniform distributions had

ranges of 1, 31, 91, and 161 deg. As we did earlier with the

Gaussian stimuli, discrimination was measured for six separations

between mean directions, yielding 24 data points per person (separa-

tion values for each uniform distribution are foujnd in Table 1).

|1



All stimuli were presented for 12 frames.

Figure 9 compares the predictions of the 12-mechanism model to

data obtained with the four uniform stimuli for all observers. This

is a parameter free fit to the data, the parameters having been

determined in fitting the model to the long-duration Gaussian data.

Data are represented by the filled squares and predictions by the

lines. Inspection of the figure shows that qualitatively, the model

captures the trends in the observed data well. Chi-square goodness-

of-fit values were evaluated, for each observer, using all 24 points
• X2

obtained with the uniform stimuli. The X values for each observer

for the fitted data (Gaussian stimuli) and predicted data (uniform
• X2

stimuli) are found in Table 2. For all observers, the X values

were well below the critical value. Thus the same parameters that

earlier gave a good account of data with long-duration Gaussian

stimuli, also give a good account of data with long-duration uniform

stimuli.

Figure 9 about here

Summary of Model Results

For all observers, a line-element model with 12 mechanisms and I
Q=2, provided a good fit to data obtained with Gaussian direction

distributions presented for 12 frames. Consistent with the idea

that durations of six frames or greater fall into the same group

(see Figure 1), the same parameters that provided good fits for the

12-frame data also provided good fits for the six-, nine-, and 25-

frame data. For the briefest stimuli, three frames, the model



required that Q=6. Finally, the same parameter set estimated for

naa±.an direction distributions, presented for 12 frames, did a

good job of predicting discrimination with four uniform distri-

butions, presented for 12 frames.

Further Research

This research raises further questions about the ability of the

visual system to integrate direction information. Although we have

considered discrimination obtained with durations of six frames or

greater as a group, it is apparent that for stimuli with large

bandwidths there is a systematic change in discrimination with

duration (see Figure 1). The present model, though adequate as a

first approximation of the integration process, does not account for

this bandwidth-duration interaction. Further research is needed to

refine the model to account for this effect.

One aspect that has not been touched on here is the integration

of information betweeii the two eyes. In the present experiments,

all stimuli were presented monocularly. An experiment that could

help establish the locus of the integration would be to present part

of the distribution of directions to each eye and measure the

perceived direction of motion. By varying the relative proportion

of the overall distribution shown to each eye and its directional

content, we could establish how the visual system integrates motion

information between the two eyes and how dissimilar the two stimuli

must be before the integration system fails and rivalry results.

Another question of interest is whether color has an effect on

the integration of direction information. Recent physiological

research has shown that the cells in the Medial Temporal area (MT),

which are particularly responsive to complex moving stimuli (Newsome



et al, 1986), seem little influenced by color (Livingstone and

Hubel, 1987). If MT neurons were involved in the detection and

integration of direction information, then one could psycho-

physically test whether the color of the components of the moving

stimuli affect the perceived direction of motion.

A final question concerns the power of the system to integrate

various directions. In particular, how similar must component

directions of a stimulus be in order for integration to occur? We

have shown that people can discriminate the global direction of

motion produced by a distribution of directions, with a high degree

of accuracy, even when the bandwidth is quite large. However, we

also know that if two very different directions of motion are

presented simultaneously, the observer perceives both directions of

motion but with the separation between them exaggerated (Marshak and

Sekuler, 1979). Stimuli similar to ours could be used to examine

the continuum between perceiving a single global direction of motion

(integration) and simultaneously perceiving several different

separate directions of motion (segregation). To explore this

continuum, one could present stimuli containing many different

directions, sampled at various spacings, and measure whether

observers perceived a single global direction.

CONCLUSIONS

To summarize the findings and implications of the present

studies: Increasing stimulus bandwidth decreases direction discrim-

ination. Increasing stimulus duration results in an improvement in

discrimination performance. In developing its representation of

global direction, the visual system appears to disregard information

Jz



about individual dot paths. A line-element model with 12 mechanisms

accounts for direction discrimination for a wide variety of stimulus

bandwidths and durations. The model required a systematic chanie in

Q, the parameter that reflects the mode of pooling across mechan-

isms, to account for the change in discrimination with duration. A

Q of 6 was required for the shortest duration while a Q of 2 was

required for longer durations. A possible mechanistic way to

interpret the change in Q with duration is that as duration

decreases, fewer of the mechanisms' responses enter into the pooled,

overall response.
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FIGURE CAPTIONS

Fig.1 Discrimination thresholds (see text for definition) for five

durations, averaged over observers, plotted as a function of stimulus

distribution standard deviation (SD). Notice that at all SDs, the

three-frame thresholds are higher than all others. At the two

smallest stimulus SDs, thresholds are identical for durations of six

frames or more. For these same durations, thresholds diverge at

larger SDs. At the two largest SDs, there seems to be a systematic

change in thresholds with duration; thresholds decrease as duration

increases.

Fig.2 Discrimination thresholds (see text for definition) for four

stimulus distribution standard deviations, averaged over observers,

plotted as a function of duration. Note that for the two smallest

distribution SDs (filled and unfilled squares), thresholds have

reached an asymptotic minimum after a duration of only six frames.

Fig.3 Two types of individual dot motion, random-path (A) and fixed-

path (B). Note that only two directions of local motion are present

in both A and B and that the vector-sum of the directions is the same

in both cases.

Fig.4 Percent correct judgments as a function of mean direction

separation. Data are averaged over all observers. (A) Data are

presented for three dot-path conditions. Average standard error bars

are provided in the legend for each condition. Notice that the three

different conditions yield quite similar results. (B) Data, averaged



over the three dot-path conditions, are presented with data from

Experiment I. These Experiment I data were obtained using the same

stimulus bandwidth but presented for only three frames. Standard

error bars are provided on each curve. Note that the three-frame

data from Experiment I are far below the averaged data from

Experiment II

Fig.5 Data for four stimuli with Gaussian distributions of

directions with different standard deviations (SD), presented for a

duration of six frames. Data are represented by the filled squares

while the solid curves represent fits from a 12-mechanism line-

element model with Q=2. Each row of graphs represents data for a

single stimulus distribution SD; each column provides a single

observer's data. Note that the slope of the data gets shallower as

the distribution SD increases and that the model fits follow this

trend of the data.

Fig.6 As in Figure 5, but for a duration of nine frames.

Fig.7 As in Figure 5, but for a duration of 25 frames.

Fig.8 Data for four stimuli with Gaussian distributions of

kI directions with different standard deviations (SD), presented for a

duration of three frames. Data are represented by the filled squares

while the solid curves represent fits from a 12-mechanism line-

element model with Q=6.

Fig.9 Data for four bandwidths of uniform stimuli presented for 12

frames. Data are represented by the filled squares while the solid

4ff



curves represent predictions from a 12-mechanism line-element model

with Q=2. Model parameters were evaluated from fitting data obtained

for four stimuli with different Gaussian distribution standard

deviations presented for 12 frames. Each row of graphs represents

data for a single stimulus bandwidth; each column provides a single

observer's data. As in the previous figures, the slope of the data

gets shallower as the bandwidth increases; this trend is captured

well by the model predictions.

I
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Footnotes

1. Because of the discrete nature of the display, it was not

possible to present a continuum of directions. We approximated a

Gaussian distribution by sampling a one degree intervals.

A 2. The Gaussian distribution with a standard deviation of 0.0 deg

signifies motion in which all dots moved in parallel paths in the

same direction.

3. The evaluation of discrimination thresholds produced two

extremely large values that were substantially different from the

others. These extreme values were due to a lack of monotonicity in

two observers' data for a particular bandwidth-duration combinaticn.

These two values were excluded from the ANOVA conducted on the

bandwidth and duration data.

r
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Table 1. Bandwidths and mean directions of stimuli with Gaussian and

uniform direction distributions.

Standard Deviations of Mean Directions
Gaussian Distributions Standard Comparison

0.0 deg 90 deg 91, 92, 93, 94, 95, 96
(unitary motion) (upwards)

17 deg 90 deg 91, 92, 94, 95, 96, 98

I 34 deg 90 deg 92, 94, 95, 96, 98, 100

51 deg 90 deg 92, 95, 97, 99, 102, 105

Ranges of Mean Directions

Uniform Distributions Standard Comparison

1 deg 90 deg 91, 92, 93, 94, 95, 96
(unitary motion) (upwards)

31 deg 90 deg 91, 92, 93, 94, 95, 96

91 deg 90 deg 91, 92, 93, 96, 99, 102

161 deg 90 deg 92, 94, 95, 100, 105, :10

4?o



Table 2. Chi-square values of model fits to four Gaussian stimuli

and predictions for four uniform stimuli presented for 12 frames.

Observer Gaussian Distribution Uniform Distribution

CC 8.35 24.92

A CP 7.73 9.21

DA 4.88 7.63

JW 12.93 17.38

SW 4.16 5.60

x2
critical X.95 33.9 36.4

(df=22) (df=24)

NnNote: Values i in exceed critical X2

'I
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Table 3. Chi-square values of model fits to four Gaussian stimuli

presented for durations of three, six, nine, and 25 frames.

Observer 3 frames 6 frames 9 frames 25 frames

CC 27.62 12.93 11.35 13.03

CP 18.47 10.72 5.15 10.65

DA 24.00 14.66 7.03 5.78

JW 50.17 19.10 7.78 23.40

SW 18.47 15.64 8.35 3.87

critical X 35.2 36.4 36.4 36.4

(df=23) (df=24) (df=24) (df=24)

2
Note: Values underlin exceed critical X

.
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Reaction times to change in speed
and direction of motion

I Robert Sekuler, Ehtibar Dzhafarov,
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INTRODUCTION

Dzhafarov and Allik proposed the Local Dispersion Model (LD-model) as a

framework for interpreting detectability of planar rigid motion with an

arbitrary time-position function (Dzhafarov et al., 1981; Dzhafarov, 1982,

Dzhafarov et al., 1983; Dzhafarov and Allik, 1984). Predictions from the LD-

model were consistent with data on kinematic thresholds and psychometric

functions. Of particular importance for the present work, Allik and Dzhafarov

(1984) found good quantitative agreement between their model and reaction

times (RTs) to motion onset. Consistent with empirical findings (Ball and

Sekuler, 1980; Tynan and Sekuler, 1982), the model predicted longer RTs to

onset of slow motion than to fast motion.

In those studies of RT to motion onset, after some rest period the stimulus

started to move with constant velocity . Now we have measured RTs in a more

general situation: a target moves at a constant velocity for some random

time, after which its velocity abruptly changes to another constant value,

Observers must react as soon as the change in velocity is noticed. Our aim was

to develop a theory that would account for the dependence of RT on the

relationship between the two velocities. Figure 1 shows the various types of

kinematic functions we used. The two phases of motion always had the same,

horizontal, orientation; either they differed In speed (panels a and b), or they

were in opposite directions (panel c). For each pair of velocities we analyzed

mean RTs and standard deviations of RTs. Note, In Figure 1, that the first

velocity of a pair sometimes took a zero value (panel al); In such a case the

cange of velocity Is Identical to the onset ofl iform motion, the condition



used by Tynan and Sekuler (1982).

[Insert Figure 1 about here]

Dzhafarov and Allik originally designed the LD-model to explain how the

visual system distinguishes between a target's motion and non-motion. The

model did not deal with detection of change In a particular parameter of

motion, e. a change in direction or a change in speed. However, as we will

show In this paper, a simple modification enables the LD-model to predict

detectabil ilty of changes In velocity.

We will also show that one alternative model for RT to motion onset (Ball

and 5ekuler, 1980; Tynan and Sekuler, 1982; Allik & Dzhafarov, 1984) fails in

the general case of velocity change. This alternative model asserts that

reactions to motion onset are Initiated when the target has moved through

some constant, or critical, distance. The model is therefore referred to as a

Constant Distance Model (CD-model).

In testing the models -- Local Dispersion and Constant Distance types -- we

were primarily interested In quantitative predictions, and In the plausibility of

their parameters' optimal values. Since there is theoretical interest In the

way vision encodes direction and speed (for review: Sekuler, 1975; Nakayama,

1985), we also wanted to know whether a single framework could handle RTs to

direction reversals as well as RTs to unidirectional speed changes.

Before turning to the details of our empirical research and theoretical

analysis, consider a general postulate common to all theoretical treatments of

RTs. The postulate Is that reaction times are comprised of two additive

components. One component, the decision time (tD) Is a function of stimulus

/0'3



parameters such as velocity; the other component is residual time (tR), the

minimum time an observer needs to execute the required response. 5o, all

models considered here agree that

RT - tD + t R  [1]

The various models differ only in their interpretations of the tD component.

The rest of the paper is organized as follows. First, we briefly discuss the

LD-model and the CD-model as formulated for motion detection and for RTs to

motion onset. There are two reasons for this discussion. First, these models

are prototypes that we are going to transfer to the domain of velocity change;

second, the onset of uniform motion is a particular case of velocity change,

namely when the first of the two velocities is zero. We shall see that this

subset of data forms a strong basis for evaluating the models. After the

f discussion of the original models, we present some plausible modifications for

the situation investigated in our experiments. All the models will be

formulated in strictly psychophysical terms: the characteristics of motion on

which the decision Is based, and the decision rule itself. After the models have

been presented, experimental results will be described, and confronted by the

models. Finally, the Discussion section considers one biologlcallty plausible

system of mechanisms able to extract the required characteristics from the

I Istimulus.

LD-MODEL, CD-M1ODEL, AND PROPOSITION OF IDENTITY

The Local Dispersion Model (LD-model) has been described in more detail

I elsewhere (Dzhafarov, 1982; Dzhafarov and AllIk, 1984; Dzhafarov et

/o04



a/.,1983). Consider a two-dimensional luminance profile, L(x,y), whose

position changes over time according to some arbitrary kinematic function,

k(t)=<kx(t),k y(t)>. The LD-model identifies two separable factors that limit

motion detectability. One factor is spatio-temporal luminance fusion (or

smearing) along the trajectory of motion, the other factor Is a particular

characteristic of the kinematic function, its "local dispersion".

Luminance fusion can take place if the kinematic function, k(t), is a high-

frequency oscillation, and/or if the moving profile, L(x,y), has a repetitive

structure. In either case we have high-frequency luminance flicker at every

point of the motion trajectory. Adjacent flickers can fuse in a non-independent

fashion because of spatio-temporal luminance integration in the visual system

and in the display device. Whether the complete fusion takes place depends on

both the kinematic function and the moving profile. If fusion Is only partial, or

it does not occur at all (as with the leading edge of a unidirectionally moving

contour), then detectability of motion depends on the kinematic function only.

The model asserts that the detectability value is given by a moving average

over the moving variance of the kinematic function, a value termed Local

Dispersion (LD):

t to to

LDt) I/(2Tc2 ) I I I E[k(t,),k(t 2 )]2dt2dtidt0  [21

t-T to - i to- i

where E Is the Euclidean distance, i is the time span of the moving variance

(over the stimulus' kinematic function), T Is the time span of the moving

average (over the moving variance). Note that the term "local" in the name of



the model has a temporal rather than a spatial meaning: the LD-value is defined

at every moment of time.

Equation 2 means simply that motion detectability is proportional to an

average dispersion, or scatter, of a target's temporally close spatial positions.

The local dispersion reflects the variance of spatial positions measured within

a travelling temporal window, tO- i, to), and assigned to every moment to. At

any moment, t, the LD-value Is the mean of the moving variance between times

t and t-T. Thus If T Is zero, motion detectability is proportional to the

maximal value of moving variance; If T is infinitely large, detectability

depends on the grand mean of all variance values. Zero and Infinity form the

poles between which the actual value of T lies. Empirically, the ratio T/i has

been found to be a constant, 2, for all the data known to be relevant, though I

does vary with the display conditions and from one observer to the next. The r

is close to 0.5 sec for foveal absolute motion (te. one without a stationary

reference near the motion). Figure 2 illustrates one of the computational

algorithms that are equivalent to equation 12]. It will be discussed in more

detail in Discussion.I
(Insert Figure 2 about here]

'I Equation (21 represents LD as a particular characteristic, or feature of the

stimulus' kinematic function; as a result It has the same ontological status as

speed, distance, or acceleration. However the definition of a stimulus

parameter on which the subjects might base their choice between "motion" and

I "no motion", constitutes only the first part of a complete psychophysical model.

In the second part one should specify the decision rule for the particular



low-

experimental task. Thus, for experiments with kinematic thresholds, like

minimum amplitudes of oscillatory motions, one should assume that the motion

is detected when the LD-value exceeds some critical level, C2, where C is a

distance-dimensioned parameter (notice that the LD is measured in squared

distance units, e.q min 2).

In using the LD-model to predict RTs one needs an assumption that links

values of LD to the actual Initiation of a reaction. Here again the simplest

assumption is that a decision to react is made as soon as LD exceeds some

critical value. In applying the LD-model to reaction times elicited by onset of

motion, Allik and Dzhafarov (1984) showed that decision time, tD, can be found

from the equation:

V2 tD4 ( 1 -3 tD/ 5?)/( 12T) = C2  [31

V is the motion velocity; T, i, and C have the same meaning as above. The tD in

equation [3] can be shown to be a decreasing function of V.

For RT experiments the LD-model gave numeric values of T, i, and C that

were similar to the values needed to account for kinematic thresholds and

psychometric functions. This similarity is Important. It means that in a

reaction time experiment an observer actually obeys the experimenters

Instructions, Initiating reaction as soon as motion is detected. Putting It In

other words, the similarity of parameters across experimental situations

Implies that an observer In a reaction time experiment uses the same criterion

that an observer would use when kinematic thresholds were being measured.

This implication, which we call the Proposition of Ioentity, suggests that
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reaction time experiments should be considered as a one class of motion

detectability experiment. Although they deal with motions well above threshold

they reveal the same processes as do other types of experiments on motion

detectability.

Only one other model has been applied to data on RT to motion onset, the

Constant Distance (CD) Model (Ball and Sekuler, 1980; Tynan and Sekuler,

1982). it states that reactions to motion onset are initiated when the target

has moved through some critical distance. When the motion has a constant

velocity, V, the decision time, tD, can be found from the simple formula

tD = A/V [41

where , denotes the critical distance.

It's hard to formulate the Proposition of Identity for the CO-model because

the model itself fails with data on kinematic thresholds. Except for oscillatory

motion in a middle-frequency range (1-7 Hz), amplitude thresholds are not

constant, and even over this limited range the "constant" varies with type of

oscillation (Dzhafarov etal, 1981). Nevertheless, some authors insist that the

1•  constant displacement rule does hold for very brief unidirectional motions

_ (Cohen and Bonnet, 1972; Johnson and LeIbowItz, 1976; Bonnet, 1977, 1982). If

this suggestion were even approximately true, then the greatest precision in

estimating critical displacement would be reached* in the briefest possible

motion, namely, an Instantaneous sb/ft of position. Then the Proposition of

identity for the CD model would reduce to the assumption that the parameter a,

3 in equation [4] for reaction time, Is close to the threshold for position shift.

I
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THREE MODELS FOR RT TO VELOCITY CHANGE

We have described how the LD-model and the CD-model can account for RTs

to motion onset. When uniform motion follows a rest period the solution is

given by equations [3] and [41, in combination with the assumption expressed by

equation [1]. we will now consider how these formulations can be modified for

the general case of change from one velocity, Vo, to another, V,. Recall that Vo

Is the velocity of the first phase of motion that lasts for some random period

and then abruptly changes to the second phase, with velocity V1 . The two

motion phases have the same orientation, but different absolute values (speed)

or signs (direction). Formally speaking, we seek to express RT as a function of

<VoVl>. From the original models we know a part of this function, the

dependence of RT on pairs of the type <O,V>.

One simple solution suggests itself: reduce the general problem to the

particular case for which the solution is already known. Specifically, assume

that detection of velocity change, <Vo, Vi, is structurally equivalent to

detection of onset In the derived motion, <O,VI-Vo>. By structurally

eauivalen9t we mean Identical except for the values of the models' free

parameters. Applying this scheme to both CD-model and LD-model, we get

generalizations of equations (3] and (4].

For the Constant Distance Model:

tD -,&(Vo)/IVI-Vol [5]

For the Local Dispersion model:
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lV1-VOI 2 tD4( I-3tD/5T)/(I2Tt) = C(Vo) 2  [6]

For both equations, decision time depends upon an equivalent velocity

rather than upon a directly measurable one. Therefore, as a reminder, we'll

label the resulting models with the term "equivalent." So equation [5]

describes the equivalent Constant Distance Model (eCD-model), equation [6]

describes the equivalent Local Dispersion Model (eLD-model). The sign of V0

can be always taken as positive, whereas the sign of V1 is positive when the

two phases are unidirectional, and negative when they have opposite directions,

In both models, a and C are functions of Vo , whereas tR, as usual, is an

Independent random variable. Although it Is not logically necessary, we assume

that the parameters T and Y in the LD-model are unmodified by VO. Moreover we

will assume that the values of T and i are the same as in motion detection

experiments. Note that the second assumption Is derivable from the first

assumption together with the Proposition of Identity.

There Is an alternative, perhs more natural, way to generalize the Local

Dispersion Model to the case of velocity change. Provided the first phase of

(VoVi) lasts long enough (=T t, estimated as 1.5 sec), LD will stabilize at

LDo = Vo2 V 12 (Allik & Dzhafarov, 1984). Then, as velocity changes from V0 to

Vi , the value of LD also will change. We can postulate that velocity change

will be detected when the difference between the current LD-value and the

Initial level LD0 reaches some critical value. The critical value would depend,

in general, on the LD0 or, equivalently, on Vo:

I LD(tD) - LDo I C(Vo) 2  (71
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The difference LD(tD) - LDo is given explicitly in the following formula:

LD(tD) - LDo =

(V I-VO)tD 3(VO1 /6 + (Vl- 2 Vo)tD/ 12 - (V 1-VO)tD2/(2Ot))/Ti [8]

Here again, V0 Is taken to be positive, and V, is positive if it and V0 are in

the same direction, and negative otherwise Unlike the alternative version of

LD-model discussed earlier (the eLD-model), the local dispersion model in

equation [8] can be applied directly to the stimulus' actual, untransformed

kinematic function The only modification In the model is In the decision rule,

which is a generalized version of one originally proposed by Allik and

Dzhafarov. Therefore we can refer to a generalized Local Dispersion, or gLD,

model.

EXPERIMENTAL PROCEDURE

The display consisted of 200 spatially-random, bright dots presented under

computer control on a large, dim x-y cathode ray tube screen. The dots were 6

min In diameter, and dot-background contrast was set at 4-5 times threshold

The background luminance was about 1.5 cd/m 2. At the start of each trial, the

dots appeared and began moving Inside a 16 deg diameter circular aperture

(see Figure 1). The dots moved horizontally In fixed spatial phase along

parallel paths. When a dot reached the edge of the display it wrapped around,

reappearing sometime later at the opposite edge. The dots' velocity was

controlled by the size of steps, or displacements, from one frame to the next,

keeping frame rate constant at 100 Hz. A new set of spatially random dots was
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generated on each trial.

The experiment consisted of 35 different conditions, each corresponding to

one velocity pair, <Vo,Vl>. They were tested one at a time in blocks of 50

trials. Over the entire study, each condition was tested on three different

occasions, giving in total 150 trials per pair of velocities The duration of VO,

or stimulus foreperiod, varied according to a uniform random distribution

ranging from I to 2 seconds. Trials were initiated by the observer.

In thirty conditions, movement during both phases was In a rightward

direction. In all these conditions, the subject reacted to a change In speed only

(Figure la,b). Velocity pairs were chosen as pairs from the set of 0 (stationary

dots), 1, 2, 4, 8 and 16 deg/sec, with the constraint that the two velocities In

a condition could not be the same.

In another five conditions, speeds during both phases were the same. In

these conditions, rlghtward motion during the foreperiod changed abruptly to

leftward motion, with no change in speed (Figure Ic). In all these conditions,

the subject reacted to a change In dir-ectfon only. Speeds were 1, 2, 4, 8 .nd

16 deg/sec.

In addition we carried out an auxiliary experiment in order to find out

whether any of the obtained results could be specificblly associated with our

choice of the number of dots In the display, 200. This experiment consisted of

39 different conditions, each corresponding to one of 13 velocity pairs,

<V0,V 1>, and one of three dot densities: 50, 100, or 200 dots per screen. A

subset of the velocity pairs used In the main experiment was used here: <0, I>,

<0,4>, <0,16>, <1,8>' <2,1>; <4,0>, <4,16>, <4,-4>; <8,4>; <16,0>, < 16,1>,

<16,2>, <16,-16>, where the minus sign indicates leftward motion. In all other

respects the auxiliary experiment was Identical to the main one.I
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During analysis of the data, all responses less than 100 ms or greater than

1000 ms were discarded, as premature or indicative of the observer's

momentary distraction. The number of discarded trials was fairly constant for

all conditions, and constituted less than 5% of trials. Remaining trials were

used to calculate arithmetic means and standard deviations of RTs for each

condition.

One of the observers In the main experiment was an author of this report

(RWS), the other observer (JF) was naive with respect to the purposes of the

study. A third observer (JLM), also naive, served in the auxiliary experiment.

RESULTS

Figures 3 and 5 show the mean RTs for subjects JF and RWS, respectively.

Figures 4 and 6 show corresponding standard deviations of RTs. All panels in

every figure contain full set of data, for all <Vi,Vo0 pairs, but In each panel the

data corresponding to one value of Vo are "highlighted" (shown by squares). The

data are plotted against two abscissae. The lower abscissa represents a

measure of similarity between Vo and V,, namely i/IV1 -VoI s . arrayed

linearly. Corresponding values of the difference IV1-Vol are shown in the upper

abscissa. The square-root operation in our similarity measure has been chosen g
to linearize the theoretical curves produced by one of the models, as discussed

below.

[Insert Figure 3 about here]

[Insert Figure 4 about here]

[Insert Figure 5 about here] I
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[Insert Figure 6 about here]

One can notice the following main characteristics of the data.

(1) For a fixed Vo. means and standard deviations of the RTs both decrease

as the difference between Vi and Vo increases.

(2) For a fixed value of IV1-Vol , RT means and standard deviations

increase as the fore-speed, Vo, increases from 4 to 16 deg/sec. With slower

forespeeds (between 0 and 4 deg/s) no such trend is discernible.

(3) In ordering both means and standard deviations of RTs, only absolute

value of velocity difference, IV1-Vol, matters, irrespective of whether it

represents velocity Increment, velocity decrement, or direction reversal. Thus,

means and standard deviations of RTs for the velocity pairs <4,0> and <4,8> are

about the same, and fall between the corresponding RT moments for <4,16> and

<4,1> (difference in velocities for the first two pairs is 4, for the second 12,

and for the third 3 deg/s). In the direction reversal condition IVI-Vol is equal to

2VO. For example, the difference in velocities for the pair <16,-16> is equal to

32 deg/s. Therefore, in compliance with the general pattern, the first two

moments of the corresponding RT should be less than those for the pair <16,0>.

[Insert Figure 7 about here]

I1
The scattergram in Figure 7 presents the results of the auxiliary experiment

in which we varied the number of dots in the display (only mean RTs were

analyzed for this experiment). The abscissa represents the mean RTs found

with 200 dots in the display for various pairs of (Vo,V 1>. Against each mean RT

obtained with 200 dots we have plotted the mean RT from the same <VoV 1 >
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condition obtained with 50 dots (crosses) and 100 dots (squares). The diagonal

line represents the expected loci of data points if mean RT did not differ at all

with number of dots in the display. The Friedman rank sums test shows that the

difference between the 200 and 100 dot displays, on one hand, and the 50 dot

display, on the other is significant (0.025<D<0.05). However, it is obvious from

the figure that the fourfold change in dot density has a remarkably small effect

on mean RT. Therefore our principle results are probably not restricted to the

particular number of moving dots used in the main experiment.

Notice that characteristics () - (3) of the data are not sufficient to derive

ordinal-scale predictions about velocity pairs with different values of both V0

and IV)-Vol. A quantitative, model-bound analysis is needed for this purpose;

such an analysis follows.

ANALYSIS

COMPUTATIONAL FORMULAS FOR E[RT] AND S[RTI. Formulas [5]-[8] (in

combination with formula [1]) do not by themselves allow one to compute RT

means and standard deviations. The formulas contain random variables with

unknown distributions, tR and A(Vo)s (in the eCD-model) or C(Vo)s (in both

versions of LD-model). For every combination of these parameters' values one

can compute, using the formulas, a single value of RT. What we need Instead is

a theoretical prediction of RTs' first two moments, expected value, E[RT], and

standard deviation, S[RT]I, for each pair <Vo,Vi>. Since all models treat RT as a

sum of decision time, tD, and residual time, tR, the task Is reduced to finding

the first two moments for the summands, EtR], StR], and S[tD]s and E[tD]S, for

each pair of velocities, (VoVi>. //5I



E[RT(VoVl)] - E[tD(VoVl)] + E[tR]

[91

S(RT(V 0 V 1)] = ( S(tD(VO,Vl)] 2 4 S(tR]2 )1/2

The derivation of expressions for E[tDI and S[tDI In the eCD-mode) is

straightforward. However, it's harder to derive exact computational formulas

for tD in the eLD- and gLD-models. These derivations require explicit

assumptions about the distribution of parameter C. Because this would add

extra free parameters, we wanted to avoid making such assumptions. Instead,

we used approximate rather than exact formulas for the eLD- and gLD-model.

The required computational formulas for all the models are given In the

Appendix. To account for mean RTs one has to adjust: (1) the value of E[tRI; and

(2) a measure of central tendency of distance-dimensioned parameters (& or C)

corresponding to each value of Vo. To account for standard deviation of RTs one

has to adjust: (1) the value of S[tR]; and (2) a measure of variability of

distance-dimensioned parameters (A or C) for each value of Vo. As we see, the

number and the interpretation of the free parameters are identical in the three

models. However the measures of central tendency and variability in these

I models are different. They are shown in Table Al of the Appendix.

1I FITTINO THE MODELS. There seems to be no conventional statistical procedure to

estimate goodness of fit for both means and standard deviations, unless one

makes explicit assumptions concerning the distributions of RTs. As explained

I before, we wanted to avoid assumptions that would add free parameters. Our

aim was to determine whether one of the three models provided an account of

I the data that was substantially better than offered by the other models. This
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The values are given in percentage terms in accordance with formula [10]

Thus, 2.52% means that, on average, the deviation of E[RT] predicted by the

eLD-model from the empirical means makes 2.52% of the empirical values. For

both means and standard deviations, the models can be ordered according to

goodness-of-fit, eCD>eLD>gLD, However the differences are so small that no

model can be rejected. For the means, each model yields values of MSRD less

than 5%, obviously a very good fit. If 5% is acceptable for means, then the MSRD

values provided by the models for standard deviations are comparably good,*

The small differences in values of fit make one wonder whether the

obtained ordering of the models -- eCD>eLD>gLD-- is replicable. In other words,

can one expect to get the same ordering if the experiment is repeated? The

results of the auxiliary experiment, with three different dot densities, suggest

that the answer should be negative. The number of velocity pairs used in this

experiment was rather small, and only one value of V, was paired with V0

equal to 1, 2, and 8 deg/s. However the remaining three values of VO, 0, 4, and

16 deg/s, were paired with more than one value of V, each, and these pairs can

be used for model fitting. The results are presented in the bottom of Table 1.

* This can be shown as follows. The experiment was carried out In three blocks each containing about
50 trials per VO, VI> pair. The MSRD of the three sets of within-block means from the set of grand
means is 4.193 for RS and 3.373 for JF, both values below 53. One can conclude that the three
blocks of measurements per =dtion are mutually onsistent, and that their consistency is
omparable with the MSRDs for E[RTJ versus mean. Then It Is natural to comae the MSRDs for
S[RT] versus st. dev. with the level of consistency of the within-block st. dev.s. The latter is calculated
as MSRD of the three sets of within-block st. dev.s from the set of grand st. dev.s. The level of
consistency Is 30.113 for RS and 56.763 for JF, which Is well above the MSRDs provided by the
three models. This Informal consideration makes it obvious that the variability of st. dev.s is of a
greater order of magnitude than the variability of means. If 53 Is acceptance level for means, then
253 for standard deviations seems to bee very onservative estimate.

I
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encouraged us to use a statistic whose theoretical distribution was not known.

This statistic Is the relative deviation, Ipredicted-observedl/observed, which

expresses differences between predicted and observed values as a percentage

of the observed value. This dimensionless measure can be used for both means

and standard deviations, and seems to be a natural choice for Inherently

positive data, such as RTs. For the central tendency of relative deviations we

used Mean Squared Relative Deviation, MSRD:

MSRD = (I[ (predicted - observed)/observed ]2/n) 1/2 *100% [10]

where summation Is over all data points, that is for all n pairs, <VO, VI).

"Predicted" and "observed" should be replaced with either E[RT] and mean, or

S(RTJ and empirical standard deviation.

Theoretical predictions of the eLD-model are shown In Figures 3-6 by solid

lines. The chosen format of the x-axis makes the predictions linear for mean

RTs, and, in the range of velocity differences used, almost linear for standard

deviations. The values of free parameters at which the minimum MSRD is

achieved are given for all three models in the legends to Figures 3-6. in order

not to Impair readability we did not present the theoretical predictions of the

two other models In the same plots, and presenting them separately would have

taken too much space. The reason for singling out the eLD-model will be

3 explained below. However It Is not based on the values of minimum MSRD

achieved by each model, as one can see from Table 1.

I
i [Insert Table 1 about here]
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When RTs were averaged over the three dot densities the ordering of the models

was eLD>eCD>gLD. If the RTs corresponding to different numbers of dots were

fitted separately, so that , and C are functions of both V0 and dot density, then

the resulting ordering was eLD>gLD>eCD. As we see, there is no consistent

pattern in ordering of the models according to goodness-of-fit. in addition, the

small differences between the M5RD values are at least in part due to the

technical fact that we use precise computational formulas for the eCD-model,

but only approximate formulas for the variants of the LD-model.

DIRECTION CHANGES VS. SPEED CHANGES. Figures 3-6 corroborate the ordinal

characteristic of the data that we mentioned earlier: there were no qualitative

differences between responses to 1800 reversal of direction, on one hand, and

responses to change In speed only, on the other. First, we verified that the

fitted values of parameters were determined mainly by the unidirectional

velocity pairs, rather than by the pairs with direction reversal; Ignoring data

involving a change in direction, and fitting models only to speed change data,

produces very little change In the optimal values of models' parameters. This is

not surprising since there were six times as many unidirectional velocity pairs

as those with direction reversal. If RTs to direction reversals formed a

qualitatively separate group they would deviate from predicted values more

than do the RTs to speed change. This obviously is not the case.

The homogeneity of data, particularly the homogeneity of data for both

speed changes and direction reversals, bears on the the general problem of

velocity encoding In the visual system. However the data's homogeneity has an

additional meaning within the framework of the LD-models. Unlike the case of

unidirectional speed changes, direction reversals cause any dot to pass twice
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over each spatial position along its trajectory. For spatial positions near the

turn point this retracing leads to some luminance blur that could limit the

applicability of the formulas based on kinematic function only (see the

description of the LD-model above). The homogeneity of the data shows that the

amount of blur In direction reversals was negligibly small.

BEST-FITTING PARAMETER VALUES. Since none of the models could be dismissed

on the grounds of poor fit, we gave extra attention to the plausibility of the

optimal values of the models' parameters.

The estimates of the time-dimensioned parameters, E[t R] and 5[tR], are

given in the legends to Figures 3-6. For the eLD-model these values are shown

as the intercept points of the vertical axes with the theoretical curves

(corresponding to Infinitely large velocity difference, or zero closeness). The

estimates of tR given by the eCD-model, 214.5 ± 25.5 ms (RWS) and 209 ± 26.5

ms (JF), seem somewhat too high for residual times.** They are considerably

higher than values reported for simple RT to long large high-intensity light

flashes (Teichner and Krebs, 1972).

Estimates for the displacement-dimensioned parameters, C and A, are also

given In the legends to Figures 3-6. Note that different measures of central

tendency and variability were used for different models (see Table Al inii
Appendix 1). For both means and standard deviation the greater the value of the

displacement-dimensioned parameters, the greater the predicted rate of data

decrease as the velocity difference Increases.

Of primary Interest for us here are the values corresponding to V0.O, the

particular case when the change of velocity is the onset of a uniform motion. If
** Here, for compactrs of prentation, we use the format E[tR])*StR]. This should not be onfused

with anything like "onfidmnce intervals" for E[tR]. The EtR] Ond S~tR] are independent estimates of
two different parameters of a hypothetical distribution.
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and only if the Proposition of Identity holds, RTs to motion onset can be

considered as a particular paradigm of motion detection. Therefore by analyzing

the values of C(O) and A(M) one can find out whether a particular model is

consistent with the Proposition of Identity, le whether these values are close

to estimates of C and A derived from experiments on foveal absolute motion

detectability. Recollect that [C(O)] 2 in the LD-model is the critical value of the

local dispersion (formula 2) at which a target is judged as moving. The

parameter A(O) in the CD-model (formula 4) is the critical distance that has to

be traversed by a target to be judged as moving. In discussing detectability, the

argument (0) in C(O) and A(O) is redundant and can be dropped.

In order to compare the values of C and A directly, one can bring them to a

common denominator" by expressing them in values of amplitude thresholds

for a fixed kinematic function. The simplest choice of the kinematic function

is the instantaneous shift of position. As it was stated In the Introduction, If

the CD-model can be related to detectability at all, then the amplitude

threshold for instantaneous shift of position gives the most precise estimate

of the critical displacement. In other words, the equ/Ivalent treshold

amplitude of instantaneous shift for A (if the CD-model holds) Is A itself, It

can be shown that the equivalent threshold ampltude of Instantaneous shift

for C (if the LD-model holds) Is equal to C(6T/i) 11 2 - 3.464C (since T/i = 2).

For their own data and from their reanalysis of others' data, Dzhafarov and

AIilk obtained values of C that tell between 0. 1 - 0.7 min of arc. This can be

considered a realistic confidence Interval for E[C]. However In the analysis

underlying these estimates -- for kinematic thresholds, psychometric

functions, or reaction times -- C has been treated as a deterministic constant.

The proposition that the estimated deterministic C-values are close to E[C] is,
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strictly speaking, only a hypothesis. Therefore, in order to be absolutely sure,

we will set more conservative Interval 0.07 - 1.0 min of arc. It is hardly

conceivable that E[C] for foveal absolute motion detection ought to fall outside

these very generous boundaries. Indeed, the threshold amplitudes of

instantaneous shift equivalent to these values are 0.25 - 3.5 min of arc, and

the reported values of absolute shift thresholds lie well within these

boundaries (Legge & Campbell, 1981). Obviously, these boundaries, 0.25 - 3.5

min of arc, should be considered also as a conservative interval for possible

values of A.

Now, If the estimates of A and C are obtained from the reaction time rather

than threshold experiments, then the Proposition of Identity can be judged to

hold only If a central tendency of C and A falls between the established

boundaries. This Is what we are going to check for the values of C(O) and (O)

estimated from our present experiment.

The conservatism of our estimated boundaries for C and , makes the precise

choice of the measure of central tendency for them rather unimportant: shift

I amplitudes of 0.24 min and 3.5 min certainly correspond to detection

g probabilities close to 0 and 1, respectively. However for direct comparison one

should use a same measure of central tendency for both C and &. The measures

Ii estimated in our present analysis differ: it is E[O)] In the eCD-model, but it

is E[C(O) 1/212 in both versions of gLD-model. Fortunately we can easily avoid

comparing moments of different types, since together with E[C(0) 1/2]2 we get

g an Independent estimation of S[C(O) i /212, and the sum of the two values should

equal E[C(O)].

t [Insert Figure 8 about here]

/zz



In Figure 8 the value of E[A(0)] is plotted along with the estimations of

E[C(0)] derived from the eLD-model and gLD-model, multiplied by 3.464 to

represent the equivalent shift thresholds. The figure illustrates the fact that

E[((O)] estimated in the eCD-model grossly exceeds the very conservative upper

limit we have set: estimates are 6.62 min (RWS) and 5.11 min (JF). In contrast,

derived from the eLD-model, 1.92 min (RWS) and 1. 13 (JF) not only fall between

the conservative margins, but are also well within the more "realistic" interval

0.35 - 2.4 min of arc. The obvious conclusion is that the considered variant of

the LD-model generalization Is idcely consistent with the Proposition of

Identity, whereas the generalization of the CD-model Is grossly inconsistent

with It. In other words, If one accepts the eCD-model one must also accept the

Idea that the decision to react to the onset of motion is always made

considerably after motion is actually detected.

The interpretation of the gLD-model Is somewhat less certain. Although the

two estimates, 2.76 min (RWS) and 1.75 min (JF), are within our conservative

boundaries, the former value exceeds the "realistic" (with most probability

also rather conservative) upper margin we have set. In combination with the

fact that the fit provided by the gLD-model Is slightly worse than that of the

eLD-model, this makes the latter more preferable.

One may wonder why estimates of C(O) given by the gLD-model and eLD- f
model differ when the two models are coincident at Vo-O, where the models

converge onto the original form of LD-model. The reason Is that the two

models, gLD and eLD, are fitted to the entire set of data, and that the common

parameter tR makes the fit for different Vo-values Interdependent.
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DISCUSSION

COMPARISON OF THE MODELS. It was disappointing not to be able to Choose

among the three models on the basis of their fits to data However there are

other grounds for making a choice. For one thing, the CD-model is clearly not

consistent with the Proposition of Identity, the assumption that observers use

the same criterion in reaction time and detection experiments. Therefore

accepting the eCD-model for RTs to velocity change (including motion

onset/offset) would uncouple RT experiments from detection experiments. Such

an uncoupling would pose some difficult questions: (1) why should different

criteria control the observer's decision in the two types of experiments? (2)

why would an observer in a reaction time experiment not respond as soon as the

motion had been detected, particularly since the instructions clearly encourage

such behavior?

None of these difficulties attends the LD-model. It provides a unified

framework for both detectability and RT data, and justifies considering the

latter as a special case of the former. Although, there Is no logical necessity

for the Proposition of Identity, in the absence of other factors Occam's razor

51 compels a preference for a model in which a single principle gives rise to

various forms of motion detection.

1 Comparison of the two versions of the LD-model favors the eLD-version over

the gLD-verslon. For one thing, the eLD-model fits data slightly better (see

Table I). Second, It Is In better agreement with the Proposition of Identity: the

estimation of E[C] for RWS Is slightly over the "realistic" upper boundary we

had set. In addition, the eLD-model can be computationally simplified with a

better precision. However, the superiority of the eLD-verslon should be taken

121



with a reservation: the imprecision of the computational formulas for the gLD-

model could itself have been responsible for the latter's worse performance.

NETWORKS OF BILOCAL CORRELATORS. In the rest of the paper we will

consider the problem of realizability of the LD by a system of biologically

plausible mechanisms. First, we will discuss this problem for the original

motion detection model, then for the modifications of the eLD type. The LD-

model for motion detection has been formulated as a highly specialized

algorithm: it is applicable only if the moving stimulus, a spatio-temporal

distribution of luminance, is represented by a single kinematic function defined

at every moment. The problem of how the kinematic function is extracted from

the stimulus flow-field Is closely related to the general Issue of the detection

of non-rigid motion. Both questions are beyond the scope of this paper. However

it is easy to see that a natural step toward solution of these problems is to

realize the LD algorithm by the mass activation of more primitive and more

universal mechanisms. The response of such a system to a rigidly moving

pattern should be equal to the value of LD, but the system should perform

computations over any spatlo-temporal luminance distribution, however

deviant from rigid motion.

One such system Is suggested by the computational algorithm shown In

Figure 2, and by the form In which moving variance Is represented In equation

[2]. Variance of a set of numbers Is the mean squared deviation of the numbers

from their mean, but It Is also the mean squared pair-wise distance between

the numbers themselves. Thus, In Figure 2, the variance of spatial positions

within the travelling i-window Is proportional to the sum of all squared pair-

wise distances between the spatial positions within the window. This suggests
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the idea that the variance could be provided by a pool of mechanisms each tuned

to a particular temporal and spatial distance. The output of such a mechanism
should be proportional to the squared spatial distance to which it is tuned

It is not difficult to see in these mechanisms a variant of the widely

accepted Idea that bf/oca/ corre/ators are the elementary units of visual
motion encoding (Reichardt, 1961; Barlow and Levicv' 1963; van Doorn and

Koenderink, 1982a,b; van de Grind, Koenderink, van Doorn, 1983). A bilocal

correlator (Figure 9) consists of two units that sense the luminance profiles
falling within two identical receptive regions separated by a distance As. The

responses to the two luminance profiles are transmitted with a relative delay

At into a comparator that performs a matching operation equivalent to a point-
to-point correlation. For simplicity we will assume that a bilocal correlator is

completely specified by At and the locations, s, and s2, of its receiving

regions, as if all bilocal correlators had the same size and the same
sensitivity profile. This simplification will not affect the generality of our

analysis, since It will be confined to rigid motion only. Note that As iS the

absolute value of the 2-D vector s2-sI (or, If we consider only one-dimensional
motion, s2-si is a signed number).

At a moment t, the output of a bilocal correlator, <At, sI, S2>, is maximal If

a same luminance profile occupied locations s, and S2 at times t-At and t. With
a threshold device connected to the comparator (see Figure 9) the mechanism

becomes a detector with a Boolean output (0 or 1): It "fires" at time t if and

only if the patterns at t-At, sl) and t, S2) match. In order to make the bilocal

correlators compute a moving variance one has to make two additional

assumptions. First, the output of a mechanism <At, s1, S2) should be multiplied

by As2 - Is2-s112 (Figure 10, upper panel). Second, this output should last for i-
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At (Figure 10, lower panel)

The first assumption, multiplication by As2, can be thought of in many

"technical" variants. Thus, it could mean a straightforward amplification of the

Boolean output, or it could mean that the number of identical mechanisms <At,

Sl, S2> with Boolean outputs is an integer approximation of AS2. It might even

have no structural meaning at all: since the output of any bilocal correlator is

on a "labeled line", it can be "taken with appropriate weight" on a subsequent

processing stage Whatever the technical aspect of the multiplication, its

functional meaning is the following. In a network of bilocal mechanisms

de2 ,Cned for detection of motion, the detection of larger displacements

conveys more evidence for motion than the detection of smaller ones. Therefore

responses of the bilocal correlators should be taken with weights

monotonically related to their spatial span, As. Squaring is a particular choice

of such a monotonic function.

The second assumption, above, means that the total duration of the

mechanism's cycle of activity, starting with activation of its first sensing

unit, is i : the cycle is comprised of the transmission time, At, and the output

time, r-At. It follows that the maximum value of At a bilocal mechanism can

have is i, with instantaneous output. Since a new cycle of activity of any

mechanism is initiated at every moment of time, the assumption should be
complemented by some rules of Interaction of subsequent cycles. For simplicity

we assume no-interaction: the images of subsequent luminance profiles are

transmitted to the comparator Independently, and the overlapping outputs

summed.

The summary output of a pool of the described mechanisms at any moment t

will be proportional to moving variance of the kinematic function, provided all

triads <At, Sl, S2>, At<t, are represented in the pool. Of course, in a real

/a7



network the representation can be only provided by a finite set of mechanisms

with overlapping spatial and temporal tuning. Therefore the proportionality of

the network's output to the moving variance of the kinematic function can only

be approximate.

Moving variance is only first step in the computational algorithm shown in

Figure 2. To obtain LD one has to "smooth" the moving variance function by the

T-length moving average operator. The realization or this final stage In terms

of bilocal mechanisms is straightforward. Outputs of all the mechanisms

should be assumed to feed into a leaky integrator, or "stack" of temporal span T

(Figure 10, upper panel). Recall that the operation of averaging provides an

estimation of the magnitude of the moving variance function. Thus If T is zero

then the magnitude of the function will be the maximal single value of the

moving variance; if T Is Infinitely large then the magnitude Is the grand mean

of all variance values. The actual value of T lies between these two poles. The

output of the T-length "stack" at every moment t is proportional to the LD-

value given by formula [2]. Namely, it is equal to LD(t)T- 2 , and in decision rules

postulated for threshold setting and reaction initiation it should exceed the

critical level C2T12 .

In our description of bilocal correlators we have not specified whether the

receiving areas of a correlator are defined In retinal or stimulus-plane

coordinates. Either can be true. One could even assume that motion is processed

on two levels: a lower-level retina-bound network of bilocal correlators, and a

higher-level network with a built-in compensation for eye movements. The

question Is which of these networks is associated with motion detection. In

most motion detection paradigms eye movements are negligible, so neither

possibility can be rejected. Therefore, in the context of this paper, we will
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consider implications for velocity change detection associated with each of

these possibilities: what additional assumptions should be made, or how the

network of bilocal mechanisms can be modified, to realize the eLD-model for

detection of velocity changes.

If motion detection is defined in retinal coordinates, then the simplest

hypothesis seems to be following.*** Since no fixation point was provided in

our experiments, and the duration of the first phase of motion was relatively

long (between 1 and 2 s), the observers certainly reached the smooth-pursuit

stage of eye movement during this phase. Therefore, as velocity changes from

V0 to V1, the retinal velocity changes from 0 to IV,-Vol, precisely the

equivalence postulated In the eLD-model. One has to make additional

assumptions to explain the increase of the critical level C as V0 Increases from

4 to 16 deg/s. One could assume that tracking of faster motions Is associated

with a higher level of "noise", or "residual activity" in the network of bilocal

mechanisms, which (applying a standard signal-to-noise analysis) should be

compensated for by adoption of a higher criterion level. The higher level of

residual activity when tracking faster motions could be attributed to any or all

of the following factors: first, the initial activity in the network, before a

catching-up-with-V0 saccade, Is higher for faster motions; second, tracking

could be less smooth for faster motions; finally, the average time of

uninterrupted tracking decreases as motion velocity Increases. Indeed, if

tracking starts In the center of our 16 deg aperture, then for 8 and 16 deg/s

velocities the eye would have to return to the center and start over again 1-2

times and 2-4 times, respectively. No returns would be necessary for

velocities of 0-4 deg/s, so any residual activity following the Initial catching-

up-with-V0 saccade would have more time to diminish.

The authors are indebted to Joseph Mal]eli for substantial ontribution Into this hypothesis.
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If. motion detection is defined in stimulus-plane rather than retinal

coordinates, then some form of the "adaptation" process should replace the

physical zeroing of forespeed in the previous hypothesis. The required process

can be provided by a re-calibration of the weights, or amplification

coefficients, attached to the Boolean outputs of the bilocal correlators

Namely, at the second phase of motion, Vi , the output of any bilocal

mechanism <At, S1, S2>, instead of being multiplied by AS 2= Is2-si12 , should be

multiplied by I(s2 -s) - V0At12. Let us consider in more detail the process by

which adjustment of weights might be achieved. During the first phase of the

two-phase motion V0 , Vl> in every subset of the bilocal mechanisms

corresponding to a given At the activated mechanisms in the network will

group around the elements <At, s, s+VoAt> (provided that the subset Is

activated at all, /e If the motion has lasted for more than At). This excitation

pattern becomes stabilized after a time close to i, and the task is to detect

the change in this pattern. This goal Is achieved by the re-calibration of the

system of weights attached to the mechanisms, so that after the period i the

network would not respond until the excitation pattern changes. The re-

calibration Is mathematically equivalent to subtracting the spatial span VoAt

of the excited mechanisms from spatial spans of all mechanisms with a given
temporal span At. After that, as long as the first phase of motion lasts, the

'1 reorganized system will be silent: the responses of the excited mechanisms

will be multiplied by I(s+V0At) - s - V0At 2 - 0. As soon as the velocity changes

I to V1, the now-reorganized system will respond like the original system would

have responded to V1-V0 : the outputs of the excited mechanisms <At, s,

s+VlAt> will be multiplied by I(s*,At) - S - V0&tI2 . I(Vi-Vo)At 2. The

g hypothetical process of re-calibration, providing a transient character of
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motion detection network activity, could be referred to as "self-inhibitlon".

To understand why the reorganization of weights also affects the critical

level C, one could again assume that silencing of the network is only relative,

and that a "residual activity" is higher for faster motions. One could even

repeat one of the arguments suggested In the retina-bound-network hypothesis:

that higher residual activity is due to the higher initial activity realizing

detection of the first phase of motion. Also, the necessity to restart tracking

after encountering aperture border could be associated with a re-activation of

the network even if defined in stimulus coordinates. Alternatively, or in

addition, one could assume that spatial tuning characteristics of bilocal

mechanisms overlap, and that the degree of overlap increases with as.

Consider the set of bilocal correlators with a given span At. Suppose that

during the Vo-phase three groups of mechanisms were activated, with peak

spatial tuning to Vo&t, V0At+C, and VoAt-c The assumption we have made above

means that c Is greater for greater VoAt, and thereby for greater V0. One of the

values, VoAt, VoAtc, or VoAt-c should be chosen to serve as an effective zero

in the modified system of weights attached to the mechanisms with the

temporal span &t. At the present level of analysis it Is Immaterial whether the

effective zero Is chosen at random amidst the activated units, or whether there

is a mechanism determining the "central" value VoAt more precisely. Whatever

the rule, It IS clear that the "silencing" of the network at the end of the V0-

phase, after the weights have been re-calibrated, is only relative. For example,

If VoAt operated as an effective zero point, then the responses of the

mechanisms tuned to spatial shifts V0at c and V0At-c will each be taken with

the weight I(Vo&tc) -V0&tl2 - C2. Applying a standard signal-to-noise analysis,

greater values of c will require the adoption of higher critical levels.



CONCLUSION. We conclude this paper with a brief recapitulation of the main

results. First, a modified variant of the LD-model accounts for the RTs to

velocity changes <Vo, V1>. The essence of this modified variant is the

application of the original LD-model to the detection of motion onset in <O,V 1-

VO>, with the critical level C being a (non-strictly) increasing function of V0.

Second, at V0=0, where the modified and the original versions of the model

logically coincide, the estimated value of C was found to be in a good

agreement with the estimates obtained from other motion detectability

experiments. Third, the changes In speed and direction are treated in the same

way. In both cases, the perceptual response seems to depend upon the algebraic

difference between Vi-V o . Finally, both the original and the modified versions

of the LD-model can be realized by mass activation of a network of bilocal

mechanisms.

Some of the characteristics we have attributed to these bilocal mechanisms

do not seem to have obvious analogues in known physiological structures. The

long duration of the mechanisms' activity, about 0.5 s, suggests that the

analogues should be sought In the neuronal clrcuitry rather than in single

neurons. However physiological considerations do not seem to be most

imminent problem at present. Many questions remain to be answered in a purely

psychophysical plane. Thus, It Is not clear how the described network can

provide the concordant shift of i and C as the detection changes from absolute

to relative motion (Dzhafarov and Allik, 1984). Also, It remains to be found

out, whether the network can account for the detection of non-rigid planar

motion. This seems to be a very Important line for future analysis, which
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should show whether the model can indeed be considered as a good

generalization of the original algorithm for local dispersion.

Speaking specifically about the problem of RTs to velocity changes, an

important remaining problem is to experimentally test the hypothesis of eye

movements against the hypothesis of re-calibration of weights. Another

obvious continuation of the present work would be to use two dimensional

velocity pairs, i.e. pair of Vo and V, that differ only in the orientation of their

motions. The eLD-model, described in this paper, can be applied without

modification to this situation if IV,-Vol is understood to be the length of a

vectorial difference, rather than as the absolute value of a scalar.

I
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APPENDIX

COMPUTATIONAL FORMULAS FOR eCD-MODEL, eLD-MODEL, AND gLD-

model

Formulas for E[tD] and StD) for the eCD-model can be derived from

formula [5]:

• tD(Vo, V ) = .((Vo)]/lV i-Vol (AI)

where the period denotes either of two moments, E and S. This formula together

with the general equations (9] form the computational basis for the eCD-

model -predictions.

The situation Is more complicated with the two models that are based on

LD-model. In formulas (61 and (81 there Is no function of C(VO) on which tD

depends linearly. Strictly speaking, to deal with the problem we have to specify

the exact form of the 8 distributions of C(Vo)s, V0  0 0, 1, 2, 4, 8, and 16 deg/s.

However such an analysis would add more free parameters and make the LD-

model-based versions Incomparable with the simple application of the eCD-

model.

Fortunately there is a way to avoid such an awkward analysis. We can
assume that the decision time, tD, is considerably smaller than i (0.5s). Then in

formulas [6] and [8] all the summands except those containing the lowest power
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of the fraction tD/1 can be omitted. This assumption gives us approximate

formulas in which tD depends linearly on some (nonlinear) function of C(Vo)

Now the formulas for the moments can be easily derived. For the eLD-model we

have:

• [tD(VO,V1)] = •[C(VO) I/2](12Ti) 1/4 /( IV I -Vol) 112  (A2)

For the gLD-model we have:

.[tD(Vo,V 1 )] = .[C(O)I/ 2 ](12TT)I/ 4/VI1/ 2  if V0 - 0

(A3)

.[tD(Vo,Vl)] - .[C(VO) 2/3](6T)I/ 3/(V 1-Vo) 1/ 3  if otherwise

Here again the period stands either for E or 5, and the predictions for E[RT] and

S[RT] are derived by combining the formulas with the general equations [9). The

values of T and i in application of the formulas were put equal to Is and 0.5s,

respectively. The value of T/I has been shown to equal 2 for all detection

experiments, whereas the value of - varied in the region 0.4 - 0.7s. The value

0.5s for present analysis was chosen simply as a "round" number. We have

checked that change of x value In the region 0.4 - 0.7s leads to only minor

changes In predicted values. All three models have the same two time-

dimensioned parameters, E[tR] and S[tR]. The following table summarizes the

sets of the models' distance-dimensioned parameters.

[Insert Table Al about here]
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TABLE 1. MINIMUM MSRD VALUES

mean RT st. dev. of RT

SUBJECT eCD eLD gLD eCD eLD gLD

RWS 3.57% 3.69% 4.80% 13.66% 13.67% 14.66%

JF 2.52% 2.67% 3.12% 18.92% 20.17% 20.88%

JLM* 2.63% 1.91% 2.66%

JLM** 2.54% 2.12% 2.49%

* auxiliary experiment, averaged over 3 dot densities

**auxiliary experiment, 3 dot densities fitted separately
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TABLE Al. DISTANCE-DIMENSIONED PARAMETERS

MODEL PARAMETER CENTRAL TENDENCY VARIABILITY

eCD-model AMV 0) R[AN)] SEM~V0)]

eLD-model C(V0) E[C( V0)1/2]2  S[C( V0)1 /12

11vou0 E[C(O) 11212  [o 1/2

gLD-model C(V0)

if vou'0 E[C(V 0)2/ 3]3/ 2 SCV)/]/
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FI'URE CAPTIONS

FIGURE 1. Display and types of kinematic functions used. Multiple-dot patterns

like that shown in the upper left panel moved horizontally Inside a 16 deg

diameter circular aperture. The motion consisted of two phases, with

constant velocities represented by the slopes of the straight lines in the

panels a, al, b, bl, and c. The two motions were either in the same

direction (panels a, b), or In opposite directions (panel c). In the latter case

the two phases had equal speeds. For unidirectional phases, the change in

speed could be incremental (panel a) or decremental (panel b), Including the

cases of motion onset (panel al) and offset (panel bl). See Procedure for

details.

FIGURE 2. Schematic presentation of an algorithm equivalent to formula [2] of

the LD-model. Right panel snows a complex kinematic function with

temporal window of length i travelling In time and computing the variance

' I of spatial positions within It. Two positions of the i-window are shown In

the figure: [t'-t,t'] and [t-i,t"]. The results of the computations form the

moving variance function shown In the middle panel. Thus, the value of this

function at moment t' Is equal to the variance of spatial positions passed

between the moments t-i and t. The moving variance function Is smoothed

by travelling window of length T. This smoothing produces the LD-function
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shown in the left panel. Two positions of the T-windows are shown in the

figure: [t*-T,t*] and [t**-T,t**]. Thus the LD-value at the moment t* is

equal to the mean value of the moving variance between t*-T and t*.

FI6URE 3. Mean RT versus "square-root-closeness" of V, to VO, IVi - VOI- /2

Subject JF. Every panel contains the mean RTs for all pairs <V0, VI>, but the

means corresponding to one value of V0 (given in insets) are "highlighted"

(represented by squares), whereas the remaining values serve as a

background (dots). Filled squares correspond to velocity increase (Vi> Vo),

empty squares with central dots correspond to velocity decrease (VI< Vo),

crossed squares represent the direction reversal condition (Vi= -Vo).

Solid lines are theoretical predictions of the eLD-model: E[tR] is equal to

180.5 ms (intercept with the vertical axis), central tendency of C (from

panel 0 through 16) is equal to 0.28 - 0.31 - 0.37 -0.39 - 0.65 - 1.37 (min

arc). These values correspond to the slopes of the solid lines.

Optimal parameters for the eCD-model: E[RT] = 209.0 ms; central tendency

of A (from panel 0 through 16) Is 5.11 - 5.13 - 6.30 - 7.99 - 13.66 - 28.21

(mIn arc).

Optimal parameters for the gLD-model: E[RT] = 163.0 ms; central tendency

of C (from panel 0 through 16) Is 0.45 - 1.08 -1.63 - 2.26 - 4.07 - 8.43 (min

arc).

See Table Al for the exact meaning of "central tendency".

FIGURE 4. Standard deviation of RT versus "square-root-closeness" of V1 to

V0 , IVI - V0 1- 1 2. Subject JF. Every panel contains the st. dev.s for all

pairs <V0 , Vl>, but the st. dev.s corresponding to one value of V0 (given in
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Insets) are "highlighted" (represented by squares), whereas the remaining

values serve as a background (dots). Filled squares correspond to velocity

increase (V1 > VO), empty squares with central dots correspond to velocity

decrease (V1 < VO), crossed squares represent the direction reversal

condition (Vl= -Vo).

Solid lines are theoretical predictions of the eLD-model: S~tR] is equal to
7

22.0 ms (intercept with the vertical axis); variability of C (from panel 0

through 16) is equal to 0.046 - 0.067 - 0.084 - 0.058 - 0.118 - 0.237 (min

arc). These values roughly correspond to the slopes of solid lines.

Optimal parameters for the eCD-model: SLRTI = 26.5 ms; variability of A

(from panel 0 through 16) is 2.901 - 2.928 - 4.697 - 4.383 - 9.530 - 17 731

(min arc).

Optimal parameters for the gLD-model: S[RTI = 18.0 ms; variability of C

(from panel 0 through 16) is 0.058 - 0,281 - 0.411 - 0.449 - 0.895 - 1,833

(min arc).

See Table Al for the exact meaning of "variability".

FIGURE 5. Same as Figure 3, but for subject RWS.

Solid lines are theoretical predictions of the eLD-model: E[tR] is equal to

180.5 ms; central tendency of C (from panel 0 through 16) Is equal to 0.49

- 0.49 - 0.39 - 0.50 - 0.88 - 1.64 (min arc).

Optimal parameters for the eCD-model: E[RT] = 214.5 ms; central tendency

of A (from panel 0 through 16) Is 6.62 - 7.12 - 6.19 - 8.24 - 15.43 - 28.13

(min arc).

Optimal parameters for the gLD-model: E[RT] = 162.0 ms; central tendency

of C (from panel 0 through 16) is 0.72 - 1.4 - 1.7 - 2.66 -4.96 - 9.62 (min

1



arc).

FIGURE 6. Same as Figure 4, but for subject RWS.
Solid lines are theoretical predictions of the eLD-model: SftR] is equal to
19.5 ms, variability of C (from panel 0 through 16) is equal to 0.065 - 0.058
- 0.053 - 0.096 - 0.169 - 0.189 (min arc).

Optimal parameters for the eCD-model: S[RT] = 26.5 ms; variability of A
(from panel 0 through 16) is 3.024 - 2.930 - 3.278 - 5.378 - 11.219 -

14.660 (min arc).

Optimal parameters for the gLD-model: S[RT] - 18.0 ms, variability of C
(from panel 0 through 16) is 0.077 - 0.245 - 0.309 - 0.616 - 1.106 - 1.542

(min arc).

FIGURE 7. Results of the auxiliary experiment. Mean RTs for patterns with 50
and 100 dots at each value of <Vo,V1> are plotted against mean RTs with
patterns of 200 dots for the same V0 VI>.

FIGURE 8. Equivalent amplitude of Instantaneous displacement corresponding
to theoretical estimations of distance-dimensioned parameters, C and A, at
VO- 0. If the Proposition of Identity holds, the equivalent amplitude should
be equal to the minnal detectable amplitude for instantaneous
displacement. Clear area in the figure corresponds to the range of realistic
values for the amplitude threshold. Sparsely stippled area corresponds to
the values that are beyond the realistic limits but still within the
conservative boundaries set In this paper. Densely stippled area
corresponds to the range that certainly cannot include possible values of the
threshold amplitude. See Analysis for details.
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FIGURE 9. Basic structure of a bilocal correlator. Two identical receptor areas

centered at si and s2 feed into a matching device, or comparator.

Information transmission from the si-area to the comparator takes by t

longer than transmission from the s2 -area. Therefore the images of

luminance profiles falling on the two areas at two moments separated by

M reach the comparator simultaneously. The images are supposed to be

analogues of spatial maps of excitation, and the comparator performs an

operation analogous to a point-to-point correlation. If the value of this

correlation exceeds a critical level set by the subsequent threshold device,

the mechanism generates a signal. See Discussion for details.

FIGURE 10. Basic structure of a bifocal correlator that implements the LD-

algorithm of Figure 2. Upper panel: the output of correlators is amplified

proportionally to the squared value of their spatial spans, and is fed into a

leaky integrator. The integrator acts as a stack whose memory span is T: at

every moment t it adds the summary input to its content and "forgets" the

input received at the moment t-T. Lower panel: the bilocal correlator's

signal that Is Initiated by a given pair of luminance profiles, separated in

I time by &t, lasts for t-At. So the total cycle of activity of any correlator

takes a constant time, t. See Discussion for details.
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I. Introduction

Of the many important contributions to the study of motion perception, three stand out as

towering landmarks in a long and provocative scientific literature. Like their physical

counterparts, these intellectual landmarks can serve to orient travelers who are unfamiliar with

the surrounding territory. Also, these landmark contributions have influenced much of the

current work on motion perception. As a result, they provide a convenient and natural entree

to our discussion.

The first modern study of motion perception was done by Sigmund Exner a century ago.

Although other scientists before him also made significant contributions, Exner (1888) was the

first to appreciate that, as a perceptual quality, motion was special. Physically, motion can be

described as a spatial change over time. But Exner demonstrated that perceptually, motion was

not merely the stepchild of the perception of space and and the perception of time. In one study

(1888), Exner placed two sources of electrical sparks so close to one another that an observer

could not distinguish the two. Despite the impossibility of resolving the sources spatially, when

the sparks were presented with the appropriate time interval, observers experienced compelling

motion -the spark seemed to move from one location to another. In other words, observers

experienced motion even though they could not spatially resolve the two endpoints of the

motion. Exner also succeded in demonstrating that observers could experience motion even

though they could not temRorallv resolve its sources.

The second landmark in our brief history of motion perception is the studies Max

Wertheimer reported in his 1912 monograph. Unfortunately, this monograph is more often

quoted than read. But for anyone who delves into it, Wertheimer's monograph is a remarkable

source of stimulation. Many readers will be familiar with the monograph's main experiment: a

compelling sensation of motion can be produced by a brief, sequential presentation of first one
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then the other of two, spatially adjacent lines. But the monograph also anticipates issues that

many vision researchers are working on today. For example, Wertheimer provided a good

demonstration of motion inertia, a phenomenon that is central to perceptual theory which will

be described below. He also provided a good demonstration of hysteresis, a form of "memory"

that has proven to be of much theoretical importance (Williams, Phillips & Sekuler, 1986). But

that is just a small, highly selective sample; Wertheimer's entire monograph is worth reading for

enlightement as well as for stimulating research ideas.

And finally, the third landmark exploration of motion perception is Werner Reichardt's

studies in the late 1950's and early 1960's. These studies constitute a genuine aradigm siLf in

Thomas Kuhn's sense (Kuhn, 1970). Reichardt's elegant mathematical model (1961) shifted the

field from its prior status - an enterprise geared to the uncoordinated collection of interesting

facts - to a field with a consensus about research methods and priorities. Rcichardtes model, for

the first time, stimulated people to think about how the visual system might extract motion

information from the stimulus on the retina. His work, though now a quarter-century old,

remains very much alive today. Most current models of motion extraction are elaborations on

Reichardt's original model. Basically, the scheme assumes that the visual system compares the

signals that arise, over time, from different photoreceptors. If some pattern travels across the

retina, its effect on receptor A'- at time t will be strongly correlated with its effect on another

receptor, Rb, at some slightly later time, t+D. There will be a strong cross-correlation, with lag

D, between the signals from the two receptors. Note that the spatial separation between the two

receptors acts to delay one signal relative to the other. Figure I illustrates the kernel of

Reichardt's model. Note that this simple scheme makes use of only two receptors (shaded

rectangles in each panel). Poggio and Reichardt (1973), extending the basic scheme, have shown

that a motion detection model with n inputs and a single output can be reduced to the sum of

2-input pairs, the case illustrated in Figure 1. (See Sekuler, Pantle and Levinson (1978) for more
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details.) Reichardt's work opened the way for the development of detailed, quantitative

accounts of motion perception (Reichardt, 1987).

Figure 1 about here

Although the mathematical precision, clarity, and force of Reichardt's contribution makes

today's work on motion more coherent, there is still an enormous variety of approaches to

motion. There's a good reason for this variety, despite what seems to be quite a broad

consensus.

I

The Many Functions of Motion

Since motion plays so many different perceptual roles, researchers can emphasize or

concentrate on certain aspects only. Such choices necessarily lead researchers along different

paths. Let us briefly review some of motion's many roles (see Nakayama, 1985, for a more

thorough treatment).

Motion is particularly important for segregation of figure and ground. If an object moves

relative to a background, producing differential speeds or different directions in the retinal

image, the visual system converts those differences into perceptual separation of figure and

ground (shape from motion; see Chapter 10 in this volume). Motion also segregates, or sorts,

objects into different depth planes (depth from motion; again, see Chapter 10 in this volume).

When any single region of the retina is stimulated by different velocities, the visual system is

challenged (shearing; see Koenderink & van Doom, 1978). Different velocities usually mean

different objects -or parts of objects. But in the natural world, two (or more) objects cannot

occupy the same place at the same time. The visual system seems to resolve the apparent

contradiction of different velocities within a single region by assigning those different velocities

fto different depth planes. The processes responsible for such depth assignments, structure from
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motion, are currently being actively investigated by vision scientists, physiologists, and people

interested in computer vision.

Finally, one of the main motives for studying motion perception is a desire to understand

how motion helps us avoid colliding with objects, keeps us moving along the straight and

narrow, and helps to maintain our posture. As will be shown later, motion's different functions

probably require that a variety of different neural computations be carried out, most likely by

different neural circuits.

A. StimulL

Scientific research is limited -or empowered- by the tools that are available. By prcbing it

with a sufficiently complex and rich stimulus, the motion system can be forced to reveal its own

richness. For this purpose, stimuli belonging to the family of random dot cinematograms are

especially good. All members of this family have two features in common: first, a random

spatial arrangement of their elements, which is designed to minimize visible contours; second,

some rule or rules that govern the way in which those elements are displaced from one frame of

the display to the next. [See Chang (1986) for a discussion of these stimuli.]

A pair of problems. Random dot cinematograms present a special challenge to the visual

system in the form of the co.ndence problem The term "correspondence problem"

denotes the challenge of matching elements in one frame with elements in a succeeding frame.

From top to bottom, Figure 2a illustrates three successive frames of a random dot

cinematogTam. Some subset of dots from the first frame (top) has been shifted in the second

frame (middle) and shifted again in the third frame (bottom). In Figure 2b the shifted dots are

highlighted for ease of identification.

Figure 2 about here

Though effort is needed to find the subset of dots in Figure 2a, when the same frames are

JI
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shown as a cinematogram the visual system extracts the subset with no effort at all. More

specifically, if the three frames illustrated in Figure 2 were spatially superimposed and shown

in rapid succession, the displaced set of dots would appear to move upwards and to the left.

The visual system has little trouble extracting coherent motion of the shifted dots. Even with

enormously dense and complex displays, perceived motion can still be easily extracted.

'Matching" may not be the proper term for what the visual system is actually doing, but it is

a term in common use. There are various possible strategies for solving the correspondence

problem. One strategy might be a point-by-point match. This approach may actually be

employed when the cinematogram contains just a few elements. But when the cinematogram

contains several thousand elements and only relatively few are being shifted in a coherent

fashion, a point-by-point match becomes unfeasible. An alternative employs a more global

strategy, one heuristic or another from the "bag of tricks" to which Rarnachandran and Anstis

(1986a) have called attention.

The correspondence problem is not the only challenge that the visual system must overcome

in its quest to extract useful information about object motion. Another significant obstacle, the

atre groblenm (pp. xx), arises from the limited field of view, or receptive field, assigned to

any visual neuron. Imagine that you see the world through the narrow local window of a single

receptive field. This restricted field of view necessarily creates ambiguities. Suppose an

infinitely long edge is moving through the receptive field. Any one of a large number of

combinations of directions and speeds could mimic perfectly the velocity of tha't edge. So, to

that neuron, many combinations of directions and speeds ought to be indistinguishable. Yet,

except in some very special circumstances, perceivers do not make the sort of confusions that

one neuron would. As will be seen later in this chapter, Movshon and his colleagues (1986)

fhave developed an ingenious scheme to circumvent this apparent neuronal limitation.



The ease or difficulty with which one experiences motion in displays depends upon a

number of spatial and temporal variables. For example, if the elements from one frame to

another are shifted by very large steps, the sensation of motion breaks down -instead of

motion, one set of dots seems to disappear and then reappear at a different location. This upper

limit is now called dmax, the largest displacement between successive presentations for which

observers still obtain a coherent sense of motion. The existence of such a limit has been known

for some tine; Wertheimer (1912) noted and Korte (1915) formalized it in one of his laws of

apparent motion. More recently, this spatial limit, dmax, has has become an indispensible tool

for understanding motion perception. Among other virtues, dmax can be quite useful for

bridging the gap between psychophysics and physiology. As this chapter shows, measurements

such as dmax can be made in several different domains: on single neurons, in human and

animal observers. Such comparisons, allow connections to be made across the domains. At

various points in the chapter, we will note particular linking propositions, statements that assert

some link between physiological (0) and psychophysical ('T) domains. (See Chapter 2, this

volume.)

Returning to the nature of test stimuli, it is worth pointing out that random dot

cinematograms can vary in a great many different ways. Consider first, the life time (exposure

duration) of each individual element. In some random dot cinematograms, individual elements

have a short life expectancy; they exist for a short time and then disappear to be replaced by

other random elements (Mather & Moulden, 1980; Andersen & Siegel, 1988; see Chapter 3, this

volume). This renewal scheme minimizes the probability that individual dot paths are being

tracked. For example, one could not compute a dot's direction by comparing the points at which

it entered and exited the display area.

The successive displacements of the elements in a cinematogram can be governed by various

sorts of rules. For example, a simple rule can be used, causing all the moving elements to be
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displaced in unison -all in the same direction and at the same pace. This represents the extreme

of narrow-band directional content: only one direction is present. However, there are other

possibilities. Random dot cinematograrns can contain many different, spatially intermingled,

directions of motion, all present simultaneously. For example, the elements in a given local area

may be displaced over a series of frames, not by some constant step and direction, but by

directional values drawn from a ditiuin with some given mean direction and covering a

range of directions (Watamaniuk, Sekuler & Williams, 1988).

With this latter scheme, a perceiver may experience two contradictory percepts: a)different

directions of local motions, and b)a coherent flow in the direction of the mean of the directional

distribution (Williams & Sckulcr, 1984). One sees individual dots moving randomly, but at the

same time one also perceives the overall flow of the dots in some dominant direction. This

global percept enables one to use the concept of metamerism to study the mechanisms of

motion perception (Richards, 1979). Two stimuli are said to be metameric if, despite physical

differences, they are perceptually indistinguishable. Under appropriate circumstances,

metamers reveal what information the visual system retains and what information it discards.

Although best known and exploited in color vision, metamers also exist in the domain of

motion: radically different distributions of directions are able to produce perceptually indistin-

guishable motions.

To use psychophysical "confusions" to study the number or type of underlying mechanisms,

one postulates a particular type of linking proposition, the Converse Identity proposition

(Teller, Chapter 2, this volume). One formulation of the proposition states that "statistically

indiscriminable sensations imply statistically identical states of the nervous system."

Symbolically, this proposition can be stated as

Identical 0 -> Identical IF.
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An Important Spatial Limit to Motion

In analyzing human motion perception and its possible neurophysiological basis, we have

learned a lot from experiments on apparent motion using random dot cinernatograms such as

the one illustrated in Figure 3. As indicated earlier, a key parameter from these experiments is

dmax, a spatial limit on apparent motion. This parameter has particular significance when one

tries to relate the psychophysics of motion to the physiology of direction-selective neurons; it

presumably represents the spatial range of the interactions that underlie directional selectivity

within the receptive fields. I
Figure 3 about here I

Earlier studies (Braddick, 1974) suggested that dmax was a quite closely defined parameter.

It seemed to fall between 15 and 20 minutes of arc, regardless of variations in the size and

spacing of the elements of the random dot patterns. This measure is striking because it

represents a distance much smaller than the range for apparent motion in the classic work of

Wertheimer (1912). Recall that in those studies, Wertheimer, and others after him (e.g., i

Neuhaus, 1930), quantified the range for which one could see motion when spatially-offset

lines or spots were alternated, and typically found this range to be at least several degrees of arc I
(see also Jung & Spillmann, 1970). The term "short range process" was coined by Braddick

(1974) to indicate a motion process that would be particularly responsive to cinematogram

dsplays. It was meant to contrast with the longer range process that yields perceived motion in -

patterns which contain a small number of dearly defined elements. Although recent work (see I
below) shows that the spatial limit cannot be thought of as an invariant 15-20 min arc, the idea

of a distinct short-range process seems still to be valid. 1
In fact, two demonstrations show that, under the right conditions, drnx can be extended a

good deal beyond 15-20 min arc. In one study, Baker and Braddick (1985) constructed random
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dot cinematograms in which dot displacements occurred within a pair of strips on either side of

the fixation point. By varying the separation of the strips, dnax could be measured at several

different eccentricities of viewing. The results in Figure 4 show that dmax increases with retinal

eccentricity in an orderly fashion, and at 10 degrees from the fixation point, displacements as

large as 90 minutes can be perceived as coherent motion. This increase is not entirely

unexpected, since most spatial parameters of vision increase with eccentricity (see Chapter 9,

this volume). Therefore the maximum range of motion detection is no exception to the rule.

However, two features of this result are worth noting. First, the increase in dmax with

eccentricity implies that direction of large displacements (or high velocities) can be perceived

more accurately in peripheral than in foveal vision. This is one of the few ways in which the

performance of peripheral vision is actually superior to that of the fovea. Second, the function

relating dmax to eccentricity does not have the same form as that found for parameters such as

minimum angle resolvable (acuity) [see Chapter 9, this volume]. Most likely, task-dependent

variations in scaling with eccentricity suggest that different visual functions depend upon

different subpopulations of visual neurons.

Figure 4 about here

In conduson, dmax should not be thought of as a constant; its value depends on the

location tested in the visual field. Eccentricity is not the only variable that alters dmax; an

equally potent variable is the pattern's spatial frequency content. The elements in the random

dot cinematogram illustrated in Figure 3 had quite sharp edges, and this is important in

determining the measured dmax.For example, if one takes such a cinematogram and adjusts

the displacement so that it just exceeds dmAX, the sensation of motion ivill cease, as one would

expect However, with the displacement still set at the same value, one can immediately restore

the sensation of motion by simply squinting and thereby blurring the image. Thus, blurring,

which removes the high spatial frequencies in the pattern, has effectively increased dmax. This
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may also explain why dmax is larger in the periphery of the visual field.

Cleary and Braddick (1985) tested the effects of spatial frequency on dmax in a more

systematic way. They filtered random dot patterns so that they contained only certain narrow

bands of spatial frequencies. In three different cinematograms, the center frequencies of these

narrow bands were 13, 2.7 and 5.3 cycles per degree. Results with these three filtered

cin-matograms are shown in Figure 5. The y-axis shows the percentage of errors in observers'

directional reports. The values on the x-axis are not expressed in terms of minutes of arc, as the

values in some preceding figures had been. Instead, x- axis units are the number of cycles of the

center frequency of the band, for each cinematogram. Plotted in this way, the three functions

are virtually identical, and in particular dmax (taken as the lowest displacement for which error

rate rises to 20%) falls at about the same value for all three cinematograms. However, this

constant number of cycles will occupy very different spatial extents (a, one cycle of 5.3

cycle/deg cinematogram covers only about one-fourth the distance covered by one cycle of the

1.3 cycle/deg cinernatogram). That is, the similar dmax values in Figure 5 imply a factor of four

variation in dmax expressed in the usual, angular distance units. Chang and Julesz (1983) have

reported rather similar results. Thus, within a given region of the visual field dmax is a

function of the spatial frequencies present in the image. Roughly speaking, if a random dot

cinematograrn ccnsists of big blurry patches, one can see them move over large displacements.

There is a great deal of evidence that the visual system contains receptive fields, or channels, P
with different spatial frequency properties. These results suggest that at any particular location

in the visual field, the overall scale of those receptive fields differ, not only in the scale of

patterns to which they are sensitive, but also proportionally, in the scale of displacements that

they can detect (compare the Chapter 9, this volume).

Figure S about here
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There are some other significant features in these data. Figure 5 shows that in terms of the

characteristic spatial frequency of a narrow-band cinematogram, dmax turns out to be just

about one cycle of that frequency. (There are also some interesting oscillations in performance

for displacements above one cycle, but we are not concerned with those here.) Several current

theoretical models of motion processing imply that the limiting displacement ought to be

somewhere between a quarter and half a cycle (L.&. Adelson & Bergen, 1985; van Santen &

Sperling, 1985). The form of the data casts some doubt on such 'quadrature phase' models. It

implies that correlation mechanisms that underlie motion perception are not necessarily

confused by the similarity between one cycle and the next. Therefore, they must be using

additional information than simply matching the locations of individual zero-crossings or peaks

in the one-dimensional signal. This additional information might be contained in the detailed

shape of the waveform, combined information from a range of orientations, or an extended area

of the pattern.

A second important implication comes from considering the original, unfiltered,

cinematogram. This contains a broad band of spatial frequencies, including the low frequencies

which are known to yield a large dmax. However, dmax for this broad-band pattern can still

be increased by blurring, which does not add to these low frequencies but simply attenuates

the high spatial frequencies. Thus, we conclude that the presence of high frequencies (fine

detail) can interfere with the use of motion information potentially available in the low

frequencies. That is, although each spatial frequency channel has its own dmax, in this situation

they do not act independently. This inaccessibility of information carried in the low spatial

frequencies when high frequencies are present is reminiscent of the way a static picture can be

made unrecognizable by segmenting it into sharp-edged blocks (with high spatial frequencies),

as in the well-known 'Abraham Lincoln' demonstration (Harmon, 1971). When optically

blurred, Lincoln's photo becomes immediately visible. Clearly, independent frequency
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channels are by no means the whole story, neither with respect to suprathreshold pattern

recognition nor to motion perception.

What do these results imply for defining a distinctive short range process in motion

perception? As we have seen, dmax varies as a function of the spatial frequencies in the retinal

image, and as a function of retinal eccentricity. If this limit is so variable, does the division

between 'short-range' and 'long- range' have any meaning at all? Perhaps the perceived motion

ascribed to a distinct long-range process occurred in conditions when low spatial frequency

information could be used, and consequently dmax was large. However, the short range process

was not defined solely in terms of its spatial limit. Even though various manipulations can

affect the value of drax, certain temporal properties seem to be characteristic of the short range

process.

Take for instance the eccentricity variation mentioned before. Figure 6 shows the results of

measuring dmax at different eccentricities while also varying the interval between the first and

second exposure. As the interval approaches 100 msec all the curves fall off in a similar

manner. This temporal variation does not seem to change with eccentricity. And indeed, there

is a similar effect with variation in spatial frequency: similar limiting intervals seem to hold

regardless of the cinernatogram's spatial frequency content. Again, with respect to the more

classical kind of apparent motion displays (U,., Wertheimer, 1912) these are relatively short

intervals. Therefore the distinctive temporal aspect of the short-range process holds up across

spatial variations, and a different, 'long-range' process must be invoked to account for the

apparent motion with single elements that can be seen with considerably longer delays.

Figure 6 about here

At the beginning of this section, it was suggested that dmax, a psychophysical variable,

should be related to physiological measures of the range of direction-specific interactions within

cJ/



receptive fields. Figure 7 illustrates some data which may allow us to make this connection.

The basic strate , is to measure a neuron's response to a stimulus that is displaced laterally

from one brief presentation to the next. As the displacement gradually increases, one notes the

displacement at which the responses cease to be directionally selective (U. the response to a

displacement to the left becomes as strong -or as weak- as that to a displacement to the right).

This procedure is analogous to the psychophysical assessment dmax. The data shown in Figure

7 were gathered by Mikami, Newsome and Wurtz (1986) from single neurons in macaque

monkeys. The stimuli were not random dot patterns as used in the psychophysical dmax

experinents, but thin bars that appeared to step across the visual field in a series of flash

exposures. Triangles represent measurements on directional cells in Area V1, known as the

primary visual cortex. As the regression line (dashed) indicates, the physiological analogue for

dmax varies somewhat with retinal eccertricity. Mikami, Newsome and Wurtz also studied

neurons in cortical area MT, which is believed to be spcalized for motion processing. In Area

MT, the analogue for dmax not only grows more rapidly with eccentricity, but also reaches

higher values than for VI ceils at comparable eccentricities. Mikarni, Newsome and Wurtz

(1986) have plotted some of Baker and Braddick's (1985) ita on these same axes (the squares).

The human psychophysical data seem to correspond much more closely to the maximum

displacement for cells in Area MT than in Area Vi.

Figure 7 about here

Obviously there are problems in relating the performance of single cells to an observer's

performance on some psychophysical task. For one thing, the observer presumably uses the

signals coming from a very large number of cells. There are usually differences between

stimuli. For instance, the stimulus used by Mikami and his associates made many steps as it

traversed the receptive field. As we shall see below, psychophysical dmax is higher when the

stimulus takes more than two steps. Nonetheless, it is striking that psychophysically we can
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detect the direction of displacements that are greater than those that elicit directional responses

from any cell in Area Vi. It is equally striking that psychophysical performance falls within the

range of displacements processed by Area MT cells. Apparently, a major portion of the

"machinery" for extracting motion information from successive exposures lies beyond Area Vi,

that is, beyond the first major direction-selective stage in the magnocellular stream (see Chapter

5 in this Volume).

When directionally-selective units are probed, their directional selectivity does not depend

on the stimulus passing right across the receptive field. Rather, any small region of the field

shows directional responses (see Barlow & Levick, 1965). In fact, studies such as those by

Mikami et al. in macaque cortex (1986), show that the largest displacement that produces a

directional response is normally considerably smaller than the cell's receptive field. That has

led to the idea that a receptive field is made up of many local subunits each of which is direc-

tionally selective (Emerson, Citron, Vaughn & Klein, 1987). Each subunit can generate a signal

that contributes to the cell's overall directional response. Yuillc and Grzywacz (1988) offered an

explicit computational account of how motion information might be integrated over space.

Their model gives an excellent account of various psychophysical demonstrations that

neighboring regions in the visual field interact cooperatively to produce an overall sensation of

motion (Chang & Julesz, 1984; Williams, Phillips & Sekuler, 1986).

Under certain conditions, stochastic displays can give rise to a percept of global motion, an

effect that can shed considerable light on the visual system's strategy for integrating motion

over space. To examine this phenomenon, Williams and Sekulcr (1984) developed special

random dot cinematograms in which all dots drew their successive displacements from a

rectangular distribution characterized by some particular directional range. On any frame of the

display, the direction in which any single dot moved was i)independent of its own history of

movements, and ii)independent of the movements of other dots. When the distribution of
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directions covered a broad range of directions -for example, 270-360 dog- the observer saw

only the local, random motions of individual dots. When the distribution of directions covered

a narrower range -for example, 90-180 dg- the observer continued to see those local random

motions, but now also saw a global, coherent flow in the general direction of the mean of the

distribution.

Williams and Sekuler (1984) measured the probability with which global motion was seen,

as a fumction of the directional distribution s range. They found that as the distribution changed,

so did the percept -from random, incoherent motions to global flow, or vice versa. Moreover,

J the perceptual change tended to be quite abrupt, making for frequency-of-seeing curves that

were quite steep.

After exploring a number of the parameters that determined when stochastic motions

would yield a global percept of flow, the ob'ious challenge was to characterize the system that

might produce such behavior. Williams, Phillips and Sekuler (1986) suspected that

cooperativity might be involved. Since hysteresis, a form of memory, is regarded as a reliable

marker for cooperativity, they set out to determine whether the percept of global flow exhibited

hysteresis.

In their typical experiment, a trial began with a random dot cinematogram that contained

either a narrow- or a broad-distribution of directions. Then, after some random interval, the

distribution changed slowly over successive frames. This change in the direction distribution

caused the percept to change, either from global flow to random noise (when the starting

distribution was narrow), or from random noise to global flow (when the starting distribution

was broad). The dependent measure was the direction-distribution at which the percept

gchanged from one state to the other.



The basic finding is simple: the dependent measure varied strongly with the starting state of

the stimulus (and, correlatively, the starting state of the percept). If the initial conditions had

promoted a percept of global flow, the percept switched states at a relatively broad distribution;

if the initial conditions had not promoted a percept of global flow, the percept switched state at

a far narrower distribution. Quantitative estimates of the effect of starting state were obtained

under several different stimulus conditions. After studying several control conditions,

Williams, Phillips and Sekuler (1986) concluded that the percept, once established, did indeed

exhibit a resistance to change -that is, the percept exhibited hysteresis. The results of these

experiments were well fit by a model that involved cooperative and competitive interactions

among direction-selective units. A network comprising such interactions decides among

alternative percepts on a "winner-take-all basis" (Feldman & Ballard, 1982).

One should expect that the visual system would combine motion information not just over

space but over time as well. In integration over space, there is one range - within the subunit of

the receptive field - that is related to dmax, but thcre is also a larger range over which there are

interactions among separate subunits. Analogously, there might be two time constants in the

motion system. One time constant might relate to the maximum interval for a single

displacement. However, if the subject is presented with a sequence of more than two

exposures, information may be integrated over a period much longer than the interval between

a single pair of display frames. Figure 8 illustrates this idea with some data from Snowden and

Braddick (1987). Using random dot cinematograms, dmax was measured as a function of the

number of successive exposures per trial. Note that as this number increases, dmax increases as

well. As Figure 8 shows, dmax increases up to between four and six displacements (see also

Nakayama & Silverman, 1985). Clearly, the motion system is gaining extra information from

temporal integration over successive displacements. The detector's basic directional response

requires two exposures within less than 100 msec, but Figure 8 shows that this response is
~I



enhanced by temporal integration over at least 300 msec.

The results of Figure 8 show integration over time, but one should not conclude prematurely

that the asymptotic performance is determined by the temporal limits of integration. At least

over the range shown in Figure 8, when the entire train of displacements is speeded up or

slowed down, dmax'S asymptotic number of steps remains constanL The time to reach

asymptote varies between about 100 and 400 msec, depending on the rate of presentations. Of

course, motion does inevitably involve both time and space: in taking n steps, each of a given

dmax , the stimulus traverses a particular distance.

Figure 8 about here

Figure 9 is taken from Mikarni, Newsome and Wurtz's (1986) experiment on the relation

between receptive field width and dmax for macaque Area MT neurons. As mentioned before,

the receptive field widths tend to be much larger than dmax, implying some form of subunit

structure. The graph plots the ratio between field width and dmax. Note that this ratio shows a

shallow gradient with eccentricity; between four and seven steps of dmax would fit within one

receptive field. This finding resembles the kind of asymptotic value found by Snowden and

Braddick (1987), suggesting that the limit might be set by the width of the receptive field.

Figure 9 about here

However, further experiments by Snowden (19xx) suggest that the limiting factor may be

neither spatial nor temporal, but simply a constant iumber of steps. Such a limit might reflect

the effectiveness with which signals can be propagated from one detector to'the next, across a

cooperative network. The idea that linked detectors combine information by means of mutual

facilitatory and/or inhibitory interactions can be contrasted with the simpler idea of subunits,

each having an independent directional response, whose outputs are summated in the motion

detector. (Of course, such combinations must have limits on its temporal and spatial range, even
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if they are not the major factor in these experiments.)

These results imply that in order to understand how neural structures determine

psychophysical performance in motion perception tasks, it will not be sufficient to examine the

performance of an isolated motion detector. Our perception of motion depends on integrating a

number of local neural responses. Clearly, further psychophysical experiments need to be done

to characterize this integration. For instance, how far can successive steps at different effective

velocities, or in different directions, be integrated? Hopefully, there will also be advances in

physiological knowledge that will clarify the neural basis of this integration and of other factors

that affect dmax.

A. Correspondence challenges and correspondence solutions.

In order to extract apparent motion from complex displays, the visual system somehow

solves a very difficult problem. Among the thousands of possible element-to-element matches,

only one is correct. How does the visual system determine which parts of successive images

reflect a single object in motion?

Ramachandran and Anstis (1986a) have suggested that early stages of visual processing of

motion uses various heuristics, or rules of thumb, that the human visual system has acquired

through millions of years of evolution. These heuristics have been adopted not for mathematical

elegance or aesthetic appeal, but merely because they worked. One can learn much about these

rules of thumb by watching the visual system as it struggles to solve the correspondence

problem.

These rules reflect the fact that in the real world objects move in characteristic, predictable

ways. For example, if one's arm moves, neighboring parts of the arm tend to move together. Or,

as a football spirals through the air, its parts tend to travel en rnass (no piece of the pigskin or

the laces are likely to peel off on its own independent course).

3
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The visual system seems to make the correct assumption. At a macroscopic level the physical

world is not a chaotic, amorphous mess. The visual system capitalizes on the world's

predictable physical properties and limits the matches it must consider by dealing only with

matches that would yield perceptions of motion that are plausible in the real, three-dimensional

world. Later on, we will return to speculate how this scheme might be implemented. To

examine the notion that the visual system assumes the world has order, Anstis and colleagues

fashioned motion displays that could be interpreted in more than one way and then observed

how this ambiguity was resolved (Anstis and Ramachandran, 1986a; Ramachandran and Anstis,

1986b). The resulting percepts -or interpretations- suggested that the visual system was

making three different but quite sensible assumptions about the real world: 1) inertia - that

moving objects tend to continue moving in the same direction, showing minimal changes in

velocity over time; 2) rigidity - that extended surfaces tend to move all in one piece, showing

minimal changes in velocity over space; and 3) that moving objects tend to cover and uncover

predictable regions of the background.

Assumption One:Inertia. The visual system makes one assumption that may remind you

of Newton's first law of motion: objects in motion tend to continue their motion along the same

path. (Note the resemblance between this statement and the Gestalt law of good continuation

[Bruce & Green, 19851). Perceptually, once motion is experienced there is a tendency to continue

to experience it, even after the motion has actually stopped. Wertheimer's monograph (1912)

offered an intriguing demonstration of this fact. He produced apparent motion by a series of

alternating presentations of two vertical lines. During the alternations, without warning to the

observer, Wertheimer occluded one, leaving the remaining line to appear at its normal time in

the sequence. Observers continued to see motion for several "cycles" after the line had been

I occluded. Anstis and Ramachandran (1986b) gave an elegant demonstration of this

phenomenon in the case of rotary inertia. Figure 10 illustrates one arrangement that shows
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inertia in rotary motion. First, consider control measurements, that evaluate motion perception

with no inertia. The display alternates between a pair of crosses that are rotated 45 degrees

relative to one another. These crosses can be thought of as a plus sign and a letter x. When

these two spatially overlapping figures are alternated, the apparent motion they set up is

ambiguous. Rotation is seen, but it can be either clockwise or counterclockwise (anti-clockwise,

if the demonstration is performed in Great Britain). The bottom part of the figure illustrates

what happens when an inertia-inducing constraint is added. This constraint is another, tilted,

coss, oriented toward eleven o'clock on the watch face. This constraining cross, in frame 1,

precedes the sequence of the other two crosses. Now the first two presentations, a tilted cross

followed by a plus sign, produce strong motion in a clockwise direction. Interestingly, this

strong apparent motion continues when the third element, the letter x, is presented. The first,

unambiguous jump, imparts a perceptual rotary inertia that converts the previously ambiguous

motion into one that inevitably is seen as clockwise. This may be termed a form oi motion bias

(priming).

Figure 10 about here

Assumption Two: Rigidity. Another assumption that could limit possible

correspondences is the assumption that objects are rigid; that is, all points on a moving object

are assumed to move in synchrony. Though many interesting objects are not rigid in the strict

sense, most exhibit at least some local rigidity -a tight coupling between the movements of 6
closely neighboring parts. The tendency for neighboring components to move in similar ways

lends considerable redundancy to the motions of neighboring elements within image space.

This redundancy would make it economical for the visual :/stem to extract salient features,

such as clusters of elements, rather than individual elements, from a complex display and then

search for corresponding features in successive images. This strategy, if it could be
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implemented, would certainly reduce the number of potential matches without increasing

perceptual errors. Take a leopard leaping from a branch of one tree to a branch of another.

(Note the resemblance between this statement and the Gestalt law of common fate (Bruce &

Green, 19851.) According to the rigidity assumption, a viewer who picks out any salient feature

of the leopard, such as its basic shape, and finds the same feature in a second frame need not

compare every black spot on the animal at moment to with every single black spot at moment

tI . A highly efficient system might take advantage of the spatial redundancy by attempting to

match features on a coarse scale. Consistent with this idea, Ramachandran, Ginsburg and Anstis

(1983) found that the visual system often detects correspondence between regions of similar low

spatial frequencies before it detects more detailed outlines or sharp edges. The same heuristic

might also account for the way in which a cincrnatogram's spatial frequency content influences

dmax (see above).

Assumption Three: Covering and Uncovering . The visual system appears to make a

third assumption, which is a corollary of the other to: a moving object will progressively cover

and uncover portions of a background. J.J. Gibson (1966), among others, has called attention to

the importance of this fact. When an object, which is normally opaque, temporarily occludes a

background, the background still exists; it does not disappear. To see how the third assumption

affects perception, consider Figure 11. The left panel of the figure illustrates a display in which a

j triangle and a square below it are presented and then are replaced by another square adjacent to

the triangle and directly to its right. As the right panel suggests, one sees the triangle appear to

move horizontally and to hide behind the obliquely moving square, which now appears to

occlude a triangle that is not, in fact, being displayed. The visual system seems to assume that

an object continues to exist, even if the system has to fabricate the supporting evidence (Anstis

and Ramachandran, 1985).

Figure 11 about here



But consider even more complex stimuli. What strategy could the system adopt when

presented with many objects simultaneously in apparent motion? The visual system behaves

economically, perceiving all objects in a field as moving in the same direction, unless there are

unambiguous cues to the contrary.

Figure 12 provides an example of another spatial constraint, one that operates on a more

global scale (Ramachandran and Anstis, 1985). The figure shows nine ambiguous quartets of

dots, with two dots (either black or shaded) from each quartet appearing in each frame. Under

proper conditions, observers report that the dots in each pair sometimes move vertically and

sometimes horizontally, though in opposite directions. The percept fluctuates more or less

randomly. The interesting point is that all the quartets move in the same direction at any given

time. If the dots in any one quartet appear to move vertically, the dots in all the quartets do

likewise. Then suddenly they all change step together and move horizontally; the dot quartets

entrain each other. There is a strong tendency towards seeing spatial coherence, or if you like,

uniformity across the field (see also Chapter 10, this volume).

Figure 12 about here

The visual system behaves as though it took advantage of certain rules of thumb about the

properties of objects in the real world. Naturally, if this viewpoint is more than an interesting

metaphor, we need some idea of how such behavior is possible. How might such

"assumptions" be implemented, either in neural hardware or in software? Figure 12 gives some

hint of a reductionistic explanation of this phenomenon. As was noted earlier, Braddick has

shown that when the total excursion of some stimulus occurs in a series of small, successive

displacements, dmax increases. The result is that one is more likely, than otherwise, to see

motion in a straight line. Among the interesting questions that remain, though, none is more

intriguing than the question of the genesis of these assumptions. Are they represented in
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neurons that are "hard-wired" from birth to implement those assumptions or strategies? Or do

those assumptions become wired into the system as the result of some kind of natural selection

at the neural level, a kind of neural Darwinism (Edelman, 1987; see Chapter 12, this volume).

Because this process depends upon the viewer's own experiences with his or her

environment, the resultant neural connections would be likely to reflect the properties of objects

and motions in that environment. Alternatively, does the perception of motion require some

higher level of cognition? Time -and further research- will tell.

Cortical Mechanisms

A. Initial stages.

While various psychophysical phenomena of motion perception are still fresh in mind, let us

consider some of the neuronal mechanisms that might contribute to the psychophysical effects

that have been discussed so far. Basically, in the visual cortex of cat and monkey three types of

cells seem most likely to play major roles in motion perception. Two of these cell types -

direction-selective and velocity-tuned- seem well-suited to provide estimates of local motion as

opposed to global motion. The third, more recently discovered type, is a motion segregation or

parallax cell. This type of cell may be especially relevant to several of the psychophysical effects

described earlier.

When one asks what sort ot cells contribute to perceived motion, the first answer that comes

to mind is the direction-selective cell (Pasternak, 1986, 1987; Pasternak & Leinen, 1986). In fact, a

preponderance of direction-selective cells in one region, such as Area MT, suggests that the

region is involved in processing motion information (Albright, 1984; Newsome, Wurtz,

Dursteler & Mikami, 1985; Newsome & Pare, 1988). But directional selectivity is not easily

defined. It is not only a matter of having a preferred direction of motion, a direction to which

the cell responds more vigorously than to any other. Nor is it only a matter of directional



asymnetry, in which the cell responds strongly to one direction and little or not at all to the

opposite direction. Rather, directional asymmetry may be characterized by some ratio of

responses to the motion in the optimal direction over responses to motion in the opposite

direction. One commonly used formula is

Direction Index a (Rpd - Rnpd)/Rpd "100,

where Rpd is the net response to stimulation in the preferred direction, Rnpd is the net response

to stimulation in the direction opposite the preferred direction, and "net response" signifies the

difference between the response elicited by the stimulus and the mean spontaneous activity of

the cell.

By such an index, cells vary widely in directional asymmetry. Various researchers have

advocated using a high value of this ratio, typically an index of 50, as a cutoff bewtween

direction selective from nonselective cells. However, cells' indices of direction asymmetry form

a continuous distribution, not a bimodal one.

To make matters even more complex, for many cells, direction selectivity depends on the

speed of the moving test target (Orban, Kennedy, & Maes 1981). One can then argue that

statements about any cell's directional selectivity must be contingent statements, specifying the

velocity for which selectivity has been assessed. For thi:s reason, Orban etaj. (1981) introduced

the mean direction index (MDI) which is a weighted average of direction indices measured at

different velocities, using the response strength at different speeds as weighting factors. Finally,

the direction selectivity of some cells changes with the the sign of the target's luminance

contrast (Albus, 1980; Yamane, Maske & Bishop, 1985; Orban, Gulyas, Spileers & Maes, 1987).

For such cells, a bright bar on a dark background may yield a different index of selectivity than

will a dark bar on a bright background. Perhaps the mean of the mean direction indices for light

and dark bars might be a good index of the overall direction selectivity of a cortical cell.
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The properties of direction selective cells might help account for some of the phenomena of

apparent motion. A cortical cell's direction selectivity depends on interactions between distinct

regions within the receptive field. Indeed, in Area 17 of the cat, if one masks the entire receptive

field except for a central strip some 0.30 wide, the mean direction index of cortical cells is

reduced to that of LGN cells. If a moving target is illuminated stroboscopically, direction

selectivity to that target is abolished if the gaps between successive flashes are separated too

much -either in space or in time (Duysens 2a., 1988). This may explain why the short range

motion process in apparent motion operates over short spatial and temporal intervals.

It is important to appreciate that not all direction selective cells are actually involved in

encoding motion of an outside object. Indeed most physiological studies have used a single,

isolated stimulus to measure direction selectivity, an artificial condition quite different from

those occurring outside the laboratory. Recent results (Orban, Gulyas, & Vogels, 19S7; Orban,

Culyas, & Spileers, 1988) demonstrate that in about half the cells in Areas 17 and 18 of the cat,

direction selectivity for a foreground stimulus is modified dramatically by the motion of a

textured background stimulus (see the _,olid curve in Figure 13A and the dashed curve in Figure

130. These cells have been implicated either in motion segregation (see below) or in the

extraction of depth from motion (Orban, Gulyas & Vogels, 1987). (Related observations have

been made by von Gr nau and Frost (1983) in cat lateral suprasylvian gyrus and by Allrnan e;

a.(1985) in Area MT of the owl monkey.) Other cells, for which the direction selectivity does not

depend on background motion, are most likely to encode motion of an object in the world.

Presumably, they could signal the direction of object motion M without being strongly

affected by the particular moving background against which the object happened to appear.

Figure 13 about here

Another type -f cell that may be important in motion perception is the velocity tuned cell

(Figure 14). Note that here the cell's response is a distinctly non-monotonic function of velocity,
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for both light and dark moving bars. Velocity-tuned cells typically respond optimally to some

intermediate, moderate level of stimulus velocity. Orban and colleagues (Orban 1a1., 1981;

Duysens et1., 1982) showed that at very high or very low velocities, velocity tuning was absent

in Areas 17,18, or 19 (Figure 15). The same holds for Area MT of the monkey where many cells

are velocity tuned (Maunsell & Van Essen, 1983a,b,c).

Figure 14 about here

This observation leads one to expect that velocity discrimination, measured

psychophysically, might also be best at corresponding, moderate stimulus velocities. Velocity

discrimination measured in humans, cats and monkeys confirm that this is so (Orban eLa1.,

1984; Vandenbussche eta.1., 1986a, 1986b).

In each species, the just noticeable difference in velocity is a U-shaped function of reference

velocity. Also note that whereas humans and monkeys give very similar results (minimal just

noticeable differences of about 5-7%), cats do more poorly overall (minimal just noticeable

differences of about 50%), although under optimal spatiotemporal conditions, they may

discriminate differences in velocity of about 15% (Pasternak, 1987). It is worth noting that theseki

U-shaped functions remain invariant when measured with random dot patterns rather than

moving bars (DeBruyn & Orban, 1986).

Striking though the analogy is, could the resemblance between psychophysical data and

physiological data be merely coincidental? Of course one can never rule out such a possibility.

However, one can strengthen the argument by exploring other dimensions of analogy. In

particular, one can exploit the fact that velocity tuned cells do not constitute an entirely

homogeneous class. Orban (1985), working in both monkey and cat, has shown that the optimal

stimulus velocity for velocity-tuned cells varies with receptive field eccentricity. Figure 15

groups cells into three different ranges of eccentricity, 0-5 deg, 5-15 deg, and greater than 15
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de. Note that the optimal velocity increases with retinal eccentricity. One would expect

velocity discrimination to show a similar dependence on eccentricity. Orban tLaL (1985) found,

with human observers, that indeed this is the case.

Figure 15 about here

To push the analogy even further, note that velocity-tuned cells lose their tuning when they

are tested with slow (2-15 Hz) stroboscopic motion (Figure 16). Human observers show a

comparable disruption of velocity discrimination when they, too, are tested with stroboscopic

motion (Figure 17). A striking example of this is provided by MacKay's (1958) diplacement

illusior.

Figures 16 and 17 about here

In contrast to direction- and velocity-tuned cells there is a third group of cells that

ordinarily shows no selectivity for direction, but does show selectivity under special conditions.

Recognizing their potential perceptual role, Orban and Gulyas (1988) have called such cells

"motion segreation' cells. Although motion segregation cells fall into several distinct classes

(Orban, Gulyas, & Vogels, 1987), only one will be presented here, the so-called "anti-phase" cell.

When anti-phase cells are tested with a moving bar in the conventional manner -a single

moving stimulus with no background movement- they show no direction selectivity. At first

glance, then, one might falsely think that these cells play no role in motion perception.

However, the cell's response does change markedly when a moving background is introduced.

In fact, in the presence of a background of movin& random noise, these cells become strongly

directionally selective and this selectivity is quite complex (Hammond & Smith, 1982,1984;

Hammond, Ahmed, & Smith, 1986).

Whatever the direction of the moving background, and whatever the direction of a moving

bar superimposed on that background, the cells respond most strongly when the bar moves in a

direction opposite to the background motion (Figure 18). Because they are selective fo target
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motion in a direction opposite to background motion, these cells can be labelled "anti-phase

cells" (Orban, Gulyas & Vogels, 1987).

FIgure 18 about here

Anti-phase cells fall into two dasses. In Area 17 of the cat (Figure 18), and in Area VI of the

monkey, anti-phase cells exhibit selectivity only along one particular axis of movement. The

other class of anti-phase cell, found in Area V2 of the monkey, exhibits selectivity regardless of

the axds of motion. So long as foreground and background motions occur in opposite directions,

it does not matter much what either direction is. This second class of anti-phase cells resembles

the opposed-motion cells found by Frost and Nakayama in the pigeon tecturn (1983).

What perceptual role might be played by motion segregation cells, including anti-phase

cells? They all share a potential for signalling the presence of a difference, in speed or direction,

between target and background motion. Commonly, such differences arise when target and

background lie in different depth planes. Moving objects occupying different apparent depth

planes and travelling in different directions set up shearing patterns of optical flow (Nakayama,

1985). Under some conditions, such shearing gives rise to strong kinetic contours, separating

motion in one depth plane from motion in another. The perceptual conditions needed to see

these kinetic contours have been studied by Koenderink and van Doom (1978), among others.

Those studies add support to the idea that direction segregation cells, rather than direction-

selective or velocity-tuned cells, are involved in the creation of kinetic contours (Orban &

Gulyas, 1988). For instance, if one measures the difference in direction of travel for two adjacent

random dot dnematograms necessary for producing a kinetic contour, one finds that the

direction difference has to approach 30 degrees, a value some 20 times higher than the

difference threshold for direction. Interestingly, such large critical differences in direction are

precisely what one would expect if motion-segregation cells, not direction-selective cells, played

a key role in kinetic contours. Thirty degrees is about the smallest difference between



foreground and background motions that elicits a strong response from motion-segregation

cells.

The lesson, then, is that motion involves a great many different features, and that the

nervous system makes use of several different cell classes to produce those features. Direction

selectivity, though surely important, is not the alpha and omega of motion perception.

S. Area MT and the aperture problem.

One of the major problems of motion analysis is the way in which local motion S.'gnals are

integrated to provide information about the motion of complex objects ar 'patterns. This class

of problem was termed the "aperture problem" because it is readily made explicit when

considering measurements of motion made through finite apertures (Movshon, Adelson, Cizzi

and Newsome, 1986). Figure 19a illustrates the problem by considering the motion of two

diamond figures, one moving down and one moving to the right.

Figure 19 about here

Although the global motion of these two figures is quite different, a local measurement of

motion made in the circles drawn on the lower right-hand border of each diamond would yield

the a value in each case. The local motion of a border is usually seen as being orthogonal to

the border, as shown by the arrows linked to the circular apertures of measurement. This

atuation is formalized in the lower diagram of Figure 19a, a graph in which the angle of a

vector represents direction of motion and its length represents speed. The local measurement of

rmotion made in each of the apertures is not sufficient to define the motion of the whole object:

there is an amigmi concerning the motion measured locally. The true motion of the border

consists of the measurable component oribggrial to the border and some unmeasurable (and

therefore locally unknown) component ]2amfll to the border (dashed line in Fig. 19). The
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measurable component is represented on the figure by the oblique vector directed down and to

the right, and the unmeasurable component is represented by the dashed line orthogonal to it.

The motion of the local border thus does not specify object motion completely, but imposes the

constraint that the motion of the object containing the border must fall somewhere along the

dashed line. The true motions in the two cases illustrated (the vertical and horizontal vectors)

both correspond to different points along this "line of constraints."

The existence of these constraints makes possible a simple formal solution to this class of

aperture problems, if measurements made over two or more contours are combined (Adelson &

Movshon, 1982). The form of this solution is shown in Figure 19b. Measurements made along

the upper right border of the figure ("edge 1") provide one line of constraints; measurements

made along the lower right border ("edge 2") provide a second line of constraints; the

intersection of these two lines ("object") is the only motion consistent with the two constraints,

and must therefore yield the motion of the object.

The neural implementation of this model requires that some set of directionally-selective

neurons integrates signals from several local mcasureme ,s of motion. Because of the larger

spatial scale of Area MT receptive fields and the fact that Area MT receives directionally

selective inputs from Areas V1 and V2, it is natural to suppose that MT might be the site of this

integration. It turns out that this is indeed the case. Area MT also contains two distinct kinds of

directionally selective neurons. Component direction selective neurons, like neurons in Area

V1, provide signals about the local motions of individual contours or orientations. Pattern

d neurons, found only in Area MT, carry more fully integrated information

about motion that emerges from the combination of signals about motion from several different

contours or orientations (Movshon eLaL 1986). These neurons provide motion signals that are

invariant with the orientation of moving contours and represent a degree of abstraction of

motion information not seen at lower levels of the visual pathway.
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Our knowledge of he functional characteristics of neurons in the portions of the motion

pathway beyond Area MT is relatively sketchy. Even the anatomy is not yet fully understood,

and it is likely that areas such as Areas MST (Medial Superior Temporal), 7a and VIP (Ventral

Intraparietal) will ultimately prove to have complex functions related to several different

aspects of motion processing. For example, some neurons in Areas MST and 7a respond to

complex patterns of motion but not to the simple rigid motion of obects across the visual field.

Motter and Mountcastle (1981) have shown a pattern of directional responsiveness in parietal

neurons that lends itself to an analysis of optic flow produced by locomotion through the

environment. More recently, Saito, et al. (1986) reported several complex patterns of response

in MST neurons, including preferences for rotations both in the fronto-parallel plane and in

depth, as well as for optic flow patterns of the kind suggested by Motter and Mountcastle. Still

other data suggest a role for the higher areas of the motion pathway in the control of smooth

pursuit eye movements (see, for example, Lisbcrger, Morris & Tychscn, 1987). Moreover,

signals related to motion must also be involved in such basic perceptual tasks as segmentation

of complex images (see Nakayama, 1935; DeYoe & van Essen, 1988). Further analyses of this

complex and important neural system will surely yield new insights into the brain's processing

of visual images.

Motion Perception by a Moving Observer

Up to this point, the chapter has emphasized the dependence of motion perception upon

afferet signals. Although such an emphasis is justified, it neglects effet influences on the

t perception of object motion. Such influences are dearly important. For example, motion

perception is strongly influenced by factors such as concurrent self-motion, eye movements or

oculomotor disorders (Brandt & Dieterich, 1988). Although the physiological underpinnings of

I



these effects are not yet understood (CmIletti, et al. 1987), they do represent important boundary

conditions for the entire field of study.

Under normal everyday conditions, an observer moves freely about within his or her

environment. As a result, motion signals arising from the retina subserves two quite different

tasks- the observer must control his or her own motion and, at the same time, must also

perceive the motion of objects. These two tasks can sometimes be in conflict. For example,

while one drives down the road it is difficult to simultaneously perceive movement of roadside

tree tops. This fortuitous discovery prompted a series of experiments on object motion

perception in the presence of self-motion perception or eye movements. Concern for highway

safety lends added importance to the possibility that self-motion and object-motion interact. To

take but one example, accurate perception of changes in headway, the distance between cars, is

essential to safe driving. If a driver's ability to perceive object motion was impaired by

movement of his or her own car, the driver would be much disadvantaged when the situation

demanded rapid response to changes in headway.

Mean response times to change in headway, the inter-car separation, have been taken under

actual road conditions and compared with measurements made in the laboratory by non-

moving observers. Laboratory tests simulated a car's rear end, using an ellipse whose size was

varied electronically. Measurements were made with two different reference headways, 20 m

(lightly stippled bars) and 40 m (darkly stippled bars). As Figure 20 shows, detection of

headway change is much more difficult under actual road conditions (A) than under static

laboratory conditions (B and C). The figure also shows that it makes no difference whether the

simulation involves an ellipse (B) or a horizontal bar (C) that changes in size. Compared to

either case, detection of change is much better than on the road. These results suggest that

extrapolations from static, laboratory conditions to predictions of detection en the roadway may

underestimate roadway reaction times by as much as several hundred milliseconds (Probst,
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Krafczyk, Brandt, & Wist 1984; 'robst, Krafczyk & Brandt, 1987).

Figure 20 about here

The next experiment deals with the perception of frontoparallel, object motion while the

observer's eyes, head or trunk are also in motion. Figure 21 shows that the threshold for

detection of object motion increases during concurrent head motion and fixation of the moving

target. Data are shown for several different rates of oscillation about the vertical axis, ranging

from 0.04 to 0.25 Hz. The oscillations had an amplitude of plus and minus 200. Notice also that

similar results can be obtained without eye or head movement; neck stimulation produced by

rotating the trunk relative to the head can also elevate the threshold for object motion (Brandt,

1982; Probst =da1., 1986).

Figure 21 about here

Finally, consider the perceptual consequences of certain oculo-motor disorders. The patients

whose perceptions will be described had an acquired palsy of the oculomotor, trochJcar, or

abducens nerve (that is, the third, fourth or sixth cranial nerves). All these patients had

difficulties in object motion perception (Brandt & Dieterich, 1986; Dieterich & Brandt, 1987). For

example, Figure 22 shows motion perception in a patient's affected and unaffected eyes. The

figure also shows the performance of age-matched control observers. The dependent variable is

the time required to detect a moving object Generally, paresis seems to be associated with a

jsuppression of motion perception.

Figure 22 about here

Though suppression of perception of object motion is decidedly abnormal in patients with

eye muscle paresis, such suppression confers certain benefits. The perceptual suppression

reduces or eliminates the oscillopsia (illusory, perceptual jitter) that would otherwise

accompany head movements. This is partly confirmed by the fact that the perceived amplitude
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of osdclopsia in these patients is always smaller than the net retinal slip. Figure 23 shows that

the same holds for patients with an acquired down-beating nystagmus (quick involuntary

vertical oscillations of the eye; usually a sign of central nervous system dysfunction) or

congenital nystagmus (Dieterich & Brandt, 1987).

Figure 23 about here

Conclusions and Speculations

This chapter has tried to reinforce the notion that the field of motion perception is not

completely unified. The diversity of motion becomes particularly clear when one considers the

physiological processing of motion information. Different aspects of motion may be processed,

or made explicit, at different stages of the magnocellular-stream. As DeYoe & van Essen (1988)

emphasize, "motion cues can be used in a diverse range of computational tasks, only some of

which are directly related to the perception of object motions gu..." Thus, although the

magnocellular-stream has often been linked to motion perception, that link -or those links-

may turn out to be quite complex and varied (Van Essen & Maunsell, 1983).

For example, suppose we assert that some particular psychophysical aspect of motion

processing emerges at one stage of the magnocc'lular stream. This assertion assu.res vhat

Teller (1984) terms "transparency," the assumption that subsequent stages of the system do

nothing to undo this emergent achievement. In other words, those subsequent stages must be

transparent. The heterogeneity of neural properties at any one stage of the magnocellular-

stream presents quite a different challenge. Many people have recorded from cortical regions

that may be involved in motion processing. Nearly every one of those researchers (Lg, Orban,

1966) has commented on the extraordinary cell-to-cell variability in directional selectivity.

Because some of the cells at one stage in the magnocellular-stream have properties that parallel

human psychophysics in some interesting way, one mIr;h, be tempted to link psychopl', .i.s to
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the behavior of such cells. However, this fails to account for what the remaining cells in the area

are doing, or are not doing. Can we explain how the system filters out those responses? Or do

those responses act as a kind of noise?

Researchers interested in motion perception have recently begun to explore these questions.

For example, Newsome and Wurtz (1988) used a neurotoxin, ibotenic acid, to create a localized,

chemical lesion in Area MT of the monkey. Such lesions produced large, temporary losses in

the ability to initiate smooth pursuit eye movements. There is an even more dramatic,

hypothetical experiment in which one might ask what everyday vision would be like if one did

not have Area MT. This question is interesting, because of a recent clinical report of a patient

who purportedly had lost the tissue of Area MT, and neighboring areas (Zihl, von Cramon, &

Mai 1983). This patient was extraordinarily impaired on many different tests of movement

perception, particularly tests that involved moderate and faster motions (as opposed to very

slow motion). One might assume then, that loss of Area MT would impair motion perception in

a similar manner as the brain lesion impaired performance in this patient. Yet, if a macaque

monkey's Area MT is removed bilaterally and in tote the monkey has no trouble moving

around or even responding to objects such as people who move toward the monkey or near it

(A- Cowey, unpublished observations).

One possibility is that those signals upon which we base motion perception come through

j Area MT -when Area MT is available. However, various studies show that if Area MT is

destroyed, a relatively short period in which motion perception is severely impaired is followed

by a rapid recovery of function. Unfortunately, the patient described by Zihl, von Cramon and

Mai (1983) never experienced anything like the recovery that the monkeys do, perhaps because

the patient's damage was more extensive.

t
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To return to the first example given at the beginning of the chapter. Exner's demonstration

that motion is not merely a derivative from separate analyses of time and space. This

demonstration notwithstanding, it is entirely possible that some everyday problems of motion

perception could be solved by analyzing whre things are and when they are there, without

actually making the motion signal explicit. In other words, target motion does not in and of

itself guarantee that the target is processed by a specialized motion-processing system. For

example, when a target moves extremely slowly, does perception of that target necessarily

depend upon the special "machinery" normally involved with motion perception? A major

challenge for future research is learning to define the conditions under which Exner was right.

II
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Figure Captions

Figure 1. Basic scheme of Reichardt's motion detector. Panel A. Signals from two

photoreceptors (shaded rectangles) are sent to unit M where the signals arriving at various

instants are multiplied. The signal from the left receptor reaches the multiplier after some

delay, A. relative to the signal from the right receptor. As a result, the multiplier unit responds

well to a pattern moving in the direction of the arrow. A stimulus would be particularly

effective if it first stimulated the left receptor and then, with delay A, stimulated the right

receptor. Under these conditions, the product of the two signals would be large, as would be the

output of unit M. Panel B: A second group of photoreceptors and associated multiplier unit.

The position of the delay, 4, makes this group respond poorly or not at all to rightward motion.

Its preferred direction of motion, shown by the arrow, is leftward. Panel C: A more complete

Reichardt unit, with two pairs of receptors, multiplier units and delays. The left multiplier unit

would respond well to a pattern that travels across the retina from left to right (with

appropriate velocity); the right multiplier would do the same for a pattern travelling from right

to left (again, with appropriate velocity). A final, subtraction unit, not shown, would convert

the difference between the two M units' outputs into a directional response.

Figure 2. Each panel shows three frames of a simple random dot cinematogram. Some dots

have been shifted from the first frame (top) to the second frame (middle) and then to the third

frame (bottom). If the frames were presented as a random dot cinematogram, the shifted dots

would immediately manifest themselves in apparent movement. In the left panel, some effort is

required to identify the shifted dots, in still frames. In the right panel, the three frames of the

dnematogram are shown with the shifted dots highlighted for ease of identification.

-



Figure 3. Construction of a random-dot cinematogram. Two patterns of random dots are

presented in rapid succession: a typical row from the first and second pattern is shown. In a

random-dot cinematogram of the kind shown, only the dots within a central region undergo a

coherent displacement, and the subject is asked to report the shape (vertical or horizontal) of

this region. An alternative method is to displace all the dots in the pattern, requiring the subject

to report the direction of motion. (From Braddick, 1974).

Figure 4. Variation of dmax with eccentricity, e, in degrees. The display consisted of dots

displaced upwards or downwards within two vertical strips. The width and length of the strips

are scaled as e changes so that the width always equal to e/3 and length always equals 2e.

Moreover, the outer edges of the vertical strips are maintained at distance e on either side of the

fixation point.(After Baker & Braddick, 1985)

Figure S. Directional judgments for displacements in narrowband (0.5 octave) spatially

filtered random dot cinematograms. The three curves are data from patterns whose center

spatial frequencies are in the ratio 1:2:4. Displacements are plotted on the x-axis as multiples of

the period of the center frequency for each pattern. dmax is taken as the displacement for which

the error rate (y-axis) reaches 20% on the first rising part of the curve. The error rate exceeds

50% when the displacement size is between 25 and 50% the period of the pattern (From Ceary,

1988)

Figure 6. dmax as a function of the interval (ISI.) between dot pattern exposures, for three

different eccentricities with each of two subjects. For IS[ values higher than the rightmost point

of each curve, direction of motion could not be reported for any size displacement, so dma, can
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be taken as zero. Each pattern was exposed for 60 msec. (From Baker & Braddick, 1985.)

Figure 7. Maximum displacement for directional response in macaque cortical neurons.

Triangles and dashed regression line- cells in Area Vi. Circles and solid regression line: cells in

Area MT. The solid squares show human psychophysical data for comparison, taken from the

results illustrated in Figure 4. (From Mikami, Newsome & Wurtz, 1986).
I

Figure . Increase of dmax with increasing number of displacements in a sequence: dmax

as plotted refers to the size of each individual displacement in the sequence. The different

symbols refer to different rates of presentation: the value given in the legend is the stimulus

onset asynchrony, i.e., the time between onset of successive pattern exposures. (From Snowden

& Braddick, 1987.)

Figure 9. Ratio of receptive field (RF) width to maximum displacement for directional

response, for neurons in macaque Area MT. The plotted regression line indicates the shallow

increase of this ratio with receptive field eccentricity. (From Mikami, Newsome, & Wurtz,

1986.)

Figure 10. An arrangement for demonstrating rotary inertia. The top row illustrates the

two-frame sequence in a control condition. The display alternates between two, spatially-

I:o overlapping crosses that are rotated 45 degrees relative to one another. The resulting apparent

i motion is ambiguous, rotation is perceived either clockwise or counterclockwise. The bottom

row illustrates a three-frame sequence designed to show inertia. Note that a new, third cross

has been added before the original sequence. The relative orientations of the first and second

targets produce strong clockwise motion. This strong motion persists when the third element is



presented and the sequence is repeated.

figure 11. A: Display whose first frame comprises a triangle and a squdre, and whose

second frame comprises just a single square located adjacent to the position previously

occupied by the triangle. U: Diagram of the percept produced by the display. The square

appears to move obliquely upward and to the right; the triangle appears to move horizontally,

ultimately being occluded by the square.

Figure 12. Lower panel: a quartet of discs that produces a randomly fluctuating percept.

When the pair of lighter discs (labelled "") is presented in alternation with the pair of darker

discs (labelled "2) the percept varies randomly. The discs will seem to move either up and

down or left and right (as indicated by the arrows). Upper panel: when many quartets are

presented in an array, the random fluctuations of individual quartets seem to be synchronized:

at one time all seem to move up and down, at another time all seem to move left and right.

Figure 13. Responses of cortical cells (cat Area 17) to opposite direction of bar motion as a

function of texture motion. The texture was either stationary (0), or moved in the left or right

direction, at the same speed as the bar (sa), four times slower (sl) or four times faster (fa). The

dotted horizontal lines indicate the significance level; an asterisk indicates a response in the

preferred direction that is significantly different from the responses to that direction in the

control condition (texture stationary). The neuron in A remains direction selective for all

texture motion conditions; the neuron in B loses direction selectivity when the texture moves in

phase with the bar. From Orban, Gulyas & Vogels (1987).
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Figure 14. Responses of a velocity tuned cell (cat Area 18) to light and dark bars moving in

a preferred direction (to the right) or in a non-preferred direction (to the left). The cell is tuned

to the same speed (9.50/sec) for light and dark bars. For both bars, the cell is not direction

selective at 1/sec, at slow and high speeds, but becomes completely direction selective at

medium speed. (From Gulyas, Lagae & Orban, unpublished).

Figure 15. Percentage of cells plotted as a function of optimal velocity for cells in Areas 17,

18 and 19 of the cat (A) and of Area MT cells with strong velocity tuning in the macaque (B).

Distributions are plotted for 3 ranges of eccentricities (as indicated on the left of the histograms).

The third range of eccentricity shown at thc bottom extended up to 358 in the cat and up to 259

in the monkey. The data in B are plotted from Maunsell & Van Essen (1983b). From Orban

(1985).

Figure 16. Three dimensional plots of response rate in the preferred direction as a function

of apparent-velocity and strobe rate of a cat Area 17 velocity tuned cell. The dashed parts of the

velocity-response curves indicate responses below the significance level. Horizontal thin lines

indicate mean spontaneous activity. From Cremieux, Orban amd Duysens (1984).

Figure 17. Just noticeable differences in perceived velocity expressed as Weber fractions

(&waio) and plotted against stimulus velocity (W). Data are averages from two human subjects.

ight bar continuously illuminated (filled circles), light bar of low luminance (reduced 10 fold)

stroboscopically illuminated at 100 Hz (crosses), and light bar of high luminance

stroboscopically illuminated at 10 Hz (circles). The loss in velocity discrimination at 10 Hz is

not due to a reduction in total energy. (DeBruyn & Orban, unpublished).



Figure 18. Post-stimulus time histograms (PSTHs) representing the average response

(n=20).to a light bar moving horizontally over the texture (A), to the same bar moving in an

opposite direction over the texture (B), and to the texture moving on its own (C). This cell was

recorded from layer 6 in Area 17 of the cat and its receptive field was centered 3.411 from

fixation. Each row of PSTHs corresponds to a background condition indicated by a number

between I and 7. Conditions I to 3 correspond to texture motion to the left, condition 4

corresponds to a stationary texture, and conditions 5 to 7 to the texture moving to the right. In

conditions 2 and 6, the texture moves at the same speed as the bar (2.20/s); in conditions 3 and

5, slower than the bar (0.53/s), and in conditions I and 7, faster than the bar (8.80/s). From

Orban, Gulyas & Vogels (1987).

Figure 19. The aperture problem. A. Two diamonds, one mo~ing downward and one

moving to the right, showing that locally measured motions (circles) do not unambiguously

reflect the overall motions of objects. B. One formal solution to the aperture problem based on

using the intersection of the constraints set up by local measurements to resolve their

ambiguity.

Figure 20. Object-motion perception under actual road and simulated conditions. Mean

response times were determined for the perception of changes in headway at distances of 20 m

(lightly stippled bars) and 40 m (darkly stippled bars) under actual conditions (A) and

simulated conditions without concurrent self-motion (B and C). In measurements for actual

road conditions, the subject was in a moving car. An approximation of the perceptually

effective area of the rear of the leading car was simulated by an electronically-generated ellipse



of equivalent retinal size. Headway changes were simulated by adjusting the retinal ellipse

area. The times to detect changes in headway were significantly higher for the actual road

condition. Under static conditions in the laboratory there was no difference between the

detection of a gradual change in area of the ellipse (B) and a horizontal bar with the same but

one-dimensional movement (C). (After Probst, Krafczyk, Brandt, & Wist 1984).

Figure 21. Object-motion perception with head or trunk oscillations. Mean response times

(in msec) plotted as a function of oscillation. Target speed was 5 dog/sec. There were three

modes of simultaneous body-motion. The target was fixated during horizontal head oscillation

with vestibular-ocular reflex (VOR) (A), or with fixation suppressd (B), or with the head fixed

by the helmet and pure cervical stimulation provided by trunk oscillations (C). Abscissa shows

different frequencies of oscillation. Response time to detect object-motion increases with

increasing frequency of either head or trunk oscillations.

Figure 22. Response times (means and standard deviations) required to detect horizontal

object motion as a function of subject age. The stimulus moved at a constant angular velocity of

24 min/sec. The shaded areas represent results from a control group, 60 neurological patients

without ocular motor disturbances (n=10 for each decade from 10 to 70 years). Response times

j are shortest at about 20 years of age with increasing mean values and standard deviations in the

elderly. For comparison, the data from 27 patients with acquired extraocular eye muscle

pareses are shown. These patients exhibit longer response times for monocular vision with the

g affecztod eye (filled circles) as well as the normal eye (open circles). Impairment of motion

perception is more pronounced for the affected eye.
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Figure 23. Object-motion perception as a function of the eccentricity of horizontal gaze in

patients with congenital nystagmus and acquired downbeat nystagmus. Thresholds for

detection of object-motion (24 rn/sec; means and standard deviations) as a function of the

eccentricity of horizontal gaze in patients suffering from congenital nystagmus and acquired

downbeat nystagmus as compared to normals. Thresholds are indicated, on the left ordinate,

as AT (exposure time in seconds) or, on the right ordinate, as DS (displacement of stimulus in

rain of arc). Normals first show only a slight increase in thresholds with eccentric gaze and then

show a more pronounced increase on lateral gaze of 40 deg. However, whether the ocular

oscillation is congenital or acquired, the patients' thresholds are significantly raised. There is a

large increase in threshold for directions of gaze beyond 20 deg. As a result the amplitude of

the nystagmus is increased.
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